

JANUARY 12-16 // AHR EXPO JANUARY 14-16

Seminar 26 – Load Calculation Consideration for Radiant Systems

Carlos Duarte, Starr Yang, Paul Raftery, Stefano Schiavon, Fred Bauman

University of California Center for the Built Environment

cduarte@berkeley.edu p.raftery.berkeley.edu Development and Demonstration of an Interactive Web-based Design Tool for High-Thermal Mass Radiant Cooling Systems

Learning Objectives

- Understand how the difference between cooling loads for radiant cooling and all-air cooling is impacted by the heat gain characteristics, by indoor surface characteristics, and by the availability of passive cooling overnight.
- Understand the limitations of current radiant design tools and learn how this new webtool can help HVAC designers consider innovative radiant cooling systems with high-thermal mass.
- Understand experiments conducted to analyze differences in the cooling load of I) radiant and II) all-air systems, and rank the parameters that have impact on the difference in loads between these two systems.
- Explain the ideal load for radiant systems and understand the impact of an undersized radiant system on indoor air and surface temperatures.

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

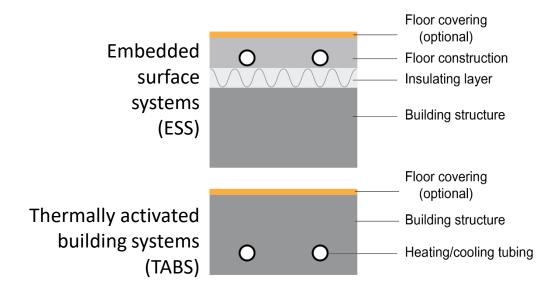
Funding

California Energy Commission EPIC Program

Center for the Built Environment

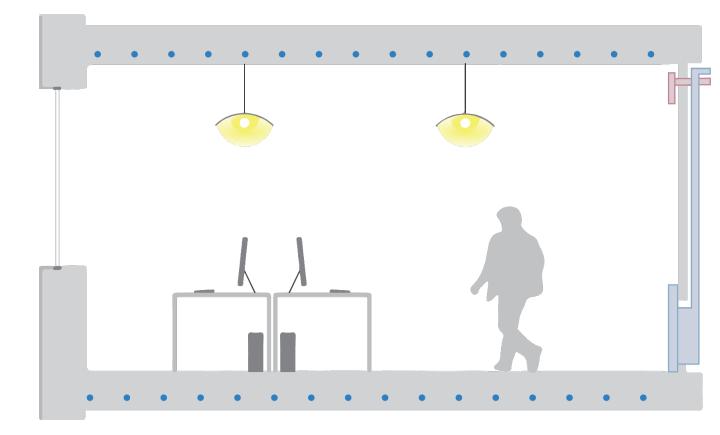
Price Industries

Outline/Agenda


- Review types of high-thermal mass radiant system used in the web-tool
- Layout of web-tool
 - Steady-state
 - Transient
- Go through a couple examples
 - Steady-state
 - Transient

Construction workers installing high thermal mass radiant system.

Considerations for high-thermal mass radiant systems


- Transient effects dominate
- Ability to activate/control a substantial amount of thermal mass in the room
 - Energy storage
 - Load shifting

Types of high thermal mass systems incorporated in the web-tool.

Considerations for high-thermal mass radiant systems

 Exposed surfaces are important!

The space's thermal mass is also important in determining a highthermal mass radiant system. Graphic source Caroline Karmann.

Current state of radiant system design approach

	100%	
 No consistent tool 	14%	Unknown
 Same methods as for all-air systems are used for radiant systems Limitations 	27%	Heat balance and advanced methods
 Steady-state Independent of control Independent of HVAC system 		
 Detailed simulation tools are perceived as complicated, time consuming, and high cost 	59%	Steady-state and radiant time series
	0%	

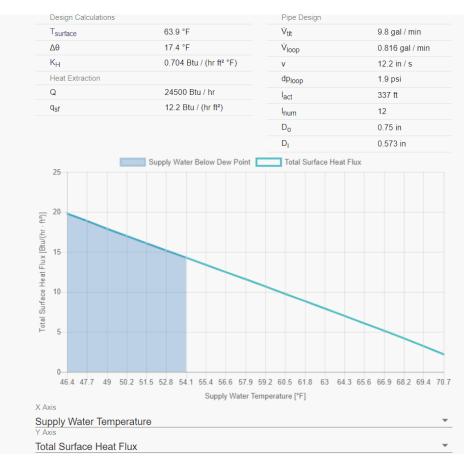
Methods used for cooling load calculations (N=22)

- Calculation type
 - Steady-state
 - ISO 11855 standard

STEADY STATE TRANSIENT RESOURCES				
This is an alpha version of the tool that is actively un	nder developmnent. Ex Design Calculations	pect bugs and please let us know abou	it them by email if you Pipe Design	I find one.
PERMALINK	T _{surface}	65.7 °F	V _{tit}	5.86 gal / min
	Δθ	17.4 °F	Ϋ́ _{loop}	0.586 gal / min
IMPERIAL FLOOR COOLING ESS	K _H	0.527 Btu / (hr ft² °F)	v	8.74 in / s
DIAGRAM	Heat Extraction		dploop	1.05 psi
DIAGRAM	Q	14600 Btu / hr	lact	324 ft
CUSTOM PLOT AXES	q _{sf}	9.15 Btu / (hr ft²)	I _{num}	10
Pipe Nominal Diameter			Do	0.75 in
Default ASTM F876 5/8			Di	0.573 in
Zone Width		Supply Water Below Dew Point	Total Surface Hea	t Flux
80 ft Zone Length	17			
20 ft	16			
Pipe Spacing	14			
<u>6</u> in	12 10 10 8			
Maximum Loop Length	12 12			
350 ft Maximum Pressure Drop Per Loop	변 × 10			
10 ft	E E			
Pipe Depth	8 He a			
4 in	6 Surface			
Topping Thermal Conductivity	al Su			
14.6 (Btu · in)/(h · ft² · °F) Covering Thermal Resistance	4 Lotal			
0.25 (ft² · °F · h)/Btu	2			
Total Slab Thickness				
8 in	0 46.4 47.7 49	50.2 51.5 52.8 54.1 55.4 56.6 57.9 5	9.2 60.5 61.8 63 64	3 65.6 66.9 68.2 69.4 70.7
Supply Water Temperature 57 °F		Supply Water Ten		
Delta Temperature Between Return and Supply	X Axis			
5 °F	Supply Water Temp	perature		▼
Design Indoor Operative Temperature	Total Surface Heat	Elux		
77 °F Design Dew Point Temperature	Total Sunace Heat	T IUA		·
55 °F				
<u> </u>				

- Calculation type
 - Steady-state
 - ISO 11855 standard
- Inputs
 - Radiant system type
 - Design parameters
 - Metric/Imperial units

STEADY STA	TE	TRANSIENT	RESOUR	CES																		
	This is	an al nha versi	ion of the tool that is	actively ur		opmner		ect bu	gs and	pleas	e let us	s knov	/ abou		by en		you fi	nd on	e.			
		PERMALINK			Tsurf		ations		6	5.7 °F				Ý		ign			5.86	gal / n	nin	
		LI CHA LI CHA			Δθ	100				7.4 °F					loop					6 gal /		
IMPERIAL	FLOOR	COOLING	ESS		K _H						u / (hr f	ft²°F)		v					8.74	-		
						Extractio	'n			521 0	av (m i	,			Ploop				1.05			
		DIAGRAM			Q	Extractio			1	4600 E	tu / br											
			-								ı / (hr ft [:]	2)		l _a					324 f	t		
	CUST	FOM PLOT AXES	S		qsf				9	. 15 DII	i / (ni n	-)			um				10			
Pipe Nominal E	Diameter													D	0				0.75	in		
	FM F876 5/8	3		*										D	i i				0.573	3 in		
10 Pipe Depth 4 Topping Therm 14.6	al Conductivity	.oop		ft ft in ft ft ft F)	-11 				Supply	/ Water	Below		pint		Fotal Su	rface	Heat F					
0.25 Total Slab Thic 8 Supply Water T	kness		(ft² · °F · h)/E	in	2 0 46	6.4 47.7	49	50.2 5 ⁻	1.5 52.	8 54.1						3 63	64.3	65.6	66.9	68.2	69.4 7	0.7
57				°F	X Axis						Sup	ply Wa	ter Ten	nperatu	e [°F]							
Delta Temperat	ture Between R	eturn and Supply		_		Mator	Tomp	orotu														_
5				°F	Supply Y Axis	vvater	remp	eratul	е													_
77	Operative Temp			°F	Total S	urface	Heat I	lux														•
-	pint Temperature	9																				
55				°F																		

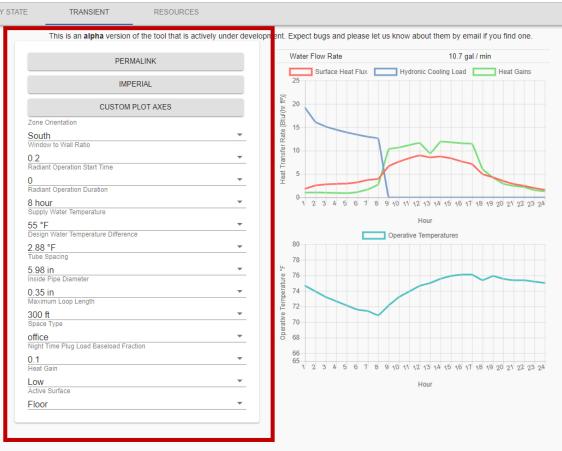

- Calculation type
 - Steady-state
 - ISO 11855 standard
- Inputs
 - Radiant system type
 - Design parameters
 - Metric/Imperial units
- Outputs
 - Design values
 - Surface heat flux
 - Hydronic heat capacity
 - Waterflow rate
 - Pipe design
 - Surface temperature
 - Visualization of the design space

STEADY STA	TE	TRANSIENT	RESO	URCES							
	This is	an alpha vers	ion of the tool that	is active ly ur	ider developmn Design Calo		is and please let us kn	ow about them by ema Pipe Desig		e.	
		PERMALINK			T _{surface}	and one	65.7 °F	V _{ttt}		5.86 gal / min	1
				_	Δθ		17.4 °F	V _{loop}		0.586 gal / mi	in
IMPERIAL	FLOOR	COOLING	ESS		K _H		0.527 Btu / (hr ft² °F			8.74 in / s	
		DUADDAN		- 11	Heat Extrac	tion		dploop		1.05 psi	
		DIAGRAM			Q		14600 Btu / hr	lact		324 ft	
	CUST	FOM PLOT AXE	S		q sf		9.15 Btu / (hr ft2)	Inum		10	
ipe Nominal D			-	_				Do		0.75 in	
	M F876 5/8	2		•				Di		0.573 in	
one Width	MT 070 5/0)		_						0.575 11	
0				ft	17		Supply Water Below Dew	Point Total Surfa	ace Heat Flux		
one Length					16						
)				ft							
pe Spacing				in	F 14						
ximum Loop	Lenath			in	Total Surface Heat Flux [Btu/(hr. ff9) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						
50	-			ft	gtu/()						
	sure Drop Per L	.oop			H 10						
)				ft	s at FI						
pe Depth					e He						
				in	o Iliac						
	al Conductivity		(Ptu ip)//b ft	2 00)	al Sr						
4.6 overing Thern	nal Resistance		(Btu · in)/(h · ft	····)	P 4						
25			(ft² · °F · I	n)/Btu	2						
tal Slab Thick	ness			<u></u>							
				in	0	7 40 50 0 54	5 500 544 55 4 500	57.0.50.0.00.5.04.0	00.040.050		4 70 7
pply Water T	emperature				40.4 47.	.7 49 50.2 51	.5 52.8 54.1 55.4 56.6	Vater Temperature [°F]	03 04.3 05.0	00.9 08.2 09	.4 /0./
7				°F	X Axis		Supply v	vater reinperature [F]			
Ita Temperat	ure Between R	eturn and Supply		°F	Supply Wate	er Temperatur	e				~
sian Indoor (Operative Temp	erature			Y Axis		-				
7	sporanto tomp	or at an o		°F	Total Surface	e Heat Flux					•
	int Temperature	9									
5				°F							

- Calculation type
 - Steady-state
 - ISO 11855 standard
- Inputs
 - Radiant system type
 - Design parameters
 - Metric/Imperial units

• Outputs

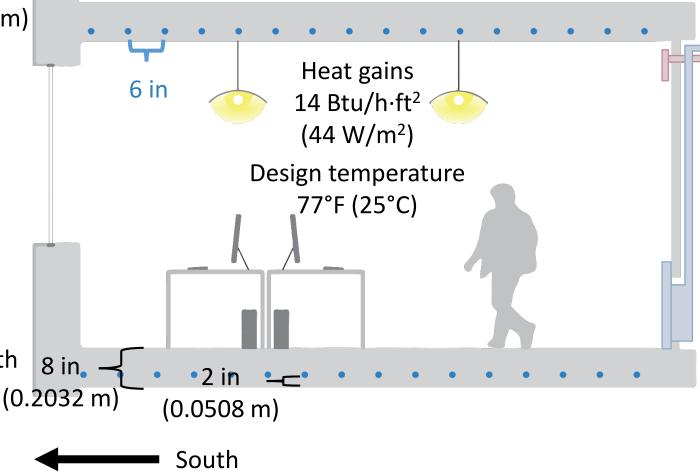
- Design values
 - Surface heat flux
 - Hydronic heat capacity
 - Waterflow rate
 - Pipe design
 - Surface temperature
- Visualization of the design space


Layout of the webtool: Transient

- Calculation type
 - Transient
 - Over 2.5 million EnergyPlus simulations

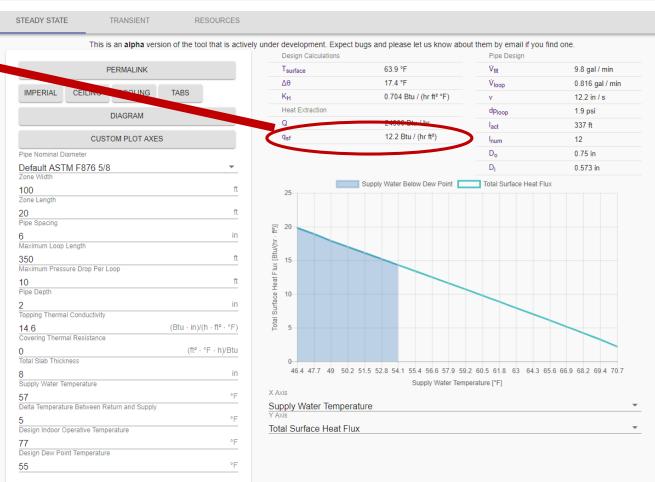
Layout of the webtool: Transient

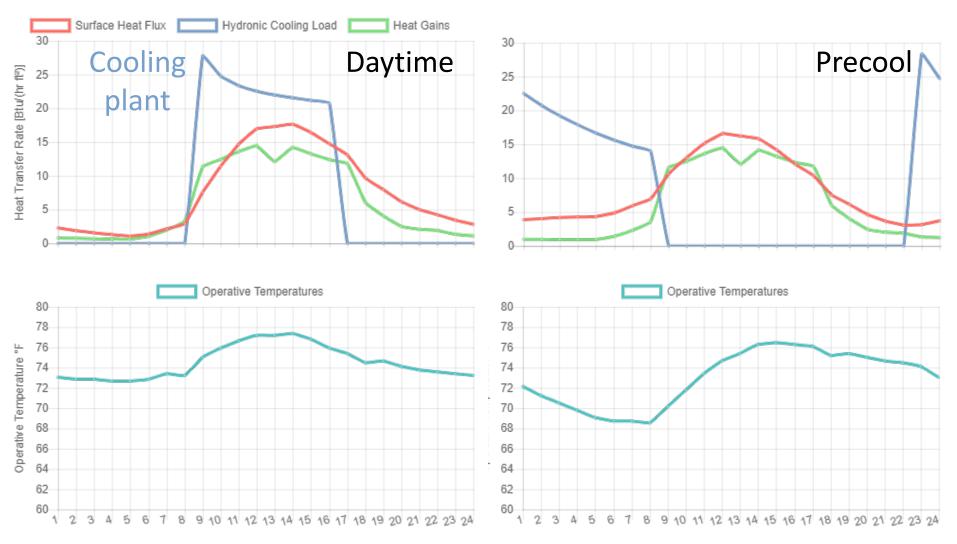
- Calculation type
 - Transient
 - Over 2.5 million EnergyPlus simulations
- Inputs
 - Design parameters
 - Time


Layout of the webtool: Transient

- Calculation type
 - Transient
 - Over 2.5 million EnergyPlus simulations
- Inputs
 - Design parameters
 - Time
- Outputs
 - 24-hour cooling day design values
 - Surface heat flux
 - Hydronic heat capacity
 - Operative temperature

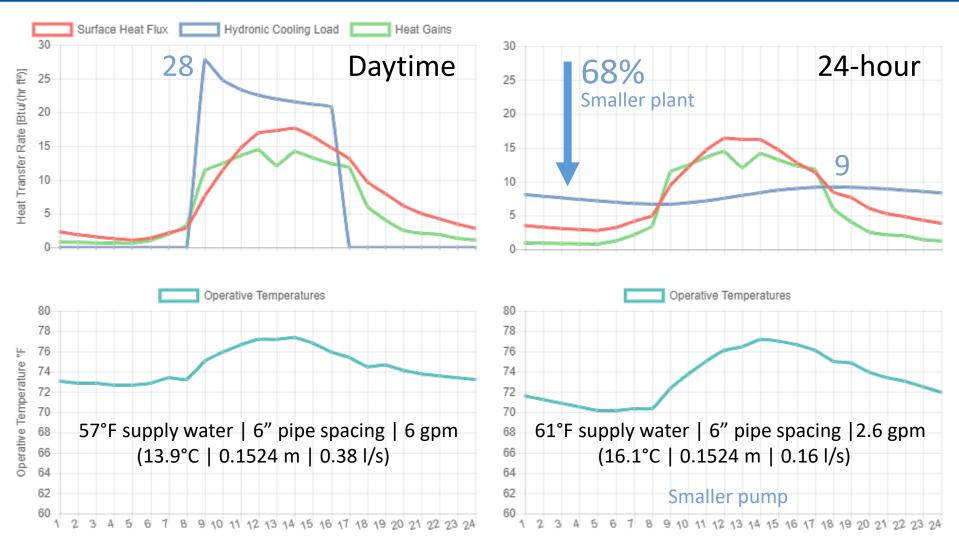
Example: Verify that system parameters meet the required load


- 100 x 20 ft (30.5 x 6 m) office zone
- 57°F (13.9°C) supply water temperature
- 5°F (2.8°C) supply/return difference
- 55°F (12.8°C) dew point temperature
- 350 ft (107 m) maximum loop length

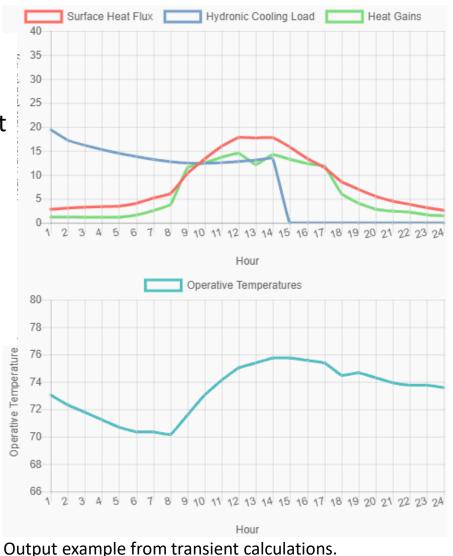

Demo: Steady-state example

Surface heat flux = 12.2 Btu/h·ft² (38.5 W/m²)

Initial design does not meet the required heat gain load of 14 Btu/h·ft² (44 W/m²)!


Demo: Transient example

Hour


Hour

Demo: Transient example

Conclusion

- Tool facilitates existing steady-state calculations
- High thermal mass systems need transient tools
- Transient tool allows designers to explore ways to reduce:
 - Energy consumption
 - Cooling plant size
 - Electricity costs

Next steps

- Continue development
- Resources
 - User's guide documentation
 - Sequences of operation for radiant control
 - EnergyPlus example models that includes control sequences

Infrared picture of ceiling with high-thermal mass radiant system.

Bibliography

- Feng, J. (Dove), F. Bauman, S. Schiavon. 2014. Critical review of water based radiant cooling system design methods. Proceedings of Indoor Air 2014.
- Raftery, P., C. Duarte, S. Schiavon, F. Bauman. 2017. CBE Rad Tool. radiant.cbe.berkeley.edu

Questions?

Carlos Duarte cduarte@berkeley.edu

Paul Raftery p.raftery.berkeley.edu