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Overview

Objective
§ Develop new controls for high 

thermal mass radiant systems

Approach
§ Interview experts
§ Review controls and trend data 

from existing buildings 
§ Develop new controls and 

iteratively test in simulation 
§ Demonstrate in two buildings
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Interviews with designers

§ Interviewed 11 prominent professionals who 
have designed over 330 radiant cooled 
buildings 

Findings
§ Generally a wide diversity of design and 

control solutions - reveals opportunities for 
standardization and improvement

§ Very rarely leverage thermal mass to shift load.

Example results: Radiant zone control device

How do you control radiant zones? #
Two position zone valves 6
Modulating zone valves 4
Pumps with 3-way control valves at the zone 3

Constant speed pump 1
Variable speed pump 1
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Trend data from a radiant building (in July)
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Motivation

How can we help designers 
benefit from the load shifting potential

of radiant systems?
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Simulation results: Common control strategy

Results from a single zone 
energy simulation on the cooling 
design day.

Conditions
§ Variable flow
§ Constant temperature 

(18 °C | 64 °F) 
§ Modulating valves 

0.5 °C (1 °F) band 

Advantages
§ Simple, familiar controls
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Effect of different operating times

Conditions
§ Constant temperature 

(18 °C | 64 °F)
§ Constant flow 

(two position valves)
§ Constant duration of 

operation (9 hours)
§ Varying time of operation
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Conditions
§ Constant temperature 

(18 °C | 64 °F)
§ Constant flow 

(two position valves)
§ Constant duration of 

operation (9 hours)
§ Varying time of operation

Result
§ Can maintain comfort 

regardless of time of 
operation

Effect of different operating times
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Design/operation possibilities: Afternoon shutoff

Conditions
§ Constant temperature 
§ Constant flow (on/off valves)
§ Operates during the morning 

and early afternoon

Advantages
§ More uniform daily comfort 

conditions
§ Reduces peak energy charges
§ Avoids building peak demand 

charges 

0.9 °C | 1.7 °F

Less variation than simple 
proportional controller



11 Oct 2019

Design/operation possibilities: Daytime shutoff

Conditions
§ Constant temperature 
§ Constant flow (on/off valves)
§ Operates only during the night

Advantages
§ Low energy charges
§ No demand charges
§ Chilled water plant operates at 

night, when dry- and wet-bulb 
temperatures are lowest

2.2 °C | 3.9 °F

More variation
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Design/operation possibilities: Constant flow

Conditions
§ Constant supply temperature 4 

°F higher than previous cases: 
68 °F (20 °C)

§ Operates 24 hours per day

Advantages
§ Low peak plant load
§ Small chiller, low initial cost
§ High supply water 

temperatures
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Controls for radiant systems
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Overview of the controls (sequences publicly available)

§ First loop responds to slab temperature 
and controls the radiant zone valve

§ Second control loop adjusts slab 
setpoint once per day based on previous 
day’s zone conditions.

§ Choose enabled time period each day. 
Radiant system is disabled at all other 
times.

§ Heating or cooling mode separated by 
at least one day

§ Supplemental zone cooling/heating 
systems:
§ Prioritizes radiant system
§ Limits systems operating in opposing 

heating/cooling modes on the same day

+

-

Zone valve 
controller Slab

Slab 
temp

Zone 
loads

Error

Slab
setpoint

Proportional 
controller

-

+

Comfort
setpoint

Error

Peak 
daily air 
temp

Preferred: Pulsed flow
Alternate: Open/close
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Example cooling day operation from field study demonstration

ErrorIndoor air max

Reset slab SP at
end of occupied hours

Indoor air
Slab
Slab setpoint
Manifold valve
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Example thermal comfort comparison in one zone

8 16
Hour

Baseline Intervention

8 16

78°F

70°F

Daily air temperature profiles
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Example thermal comfort comparison in one zone

0.94°F

0.47°F

Average day-to-day 
variability

Intervention

8 16 8 16

78°F

70°F

Hour

Baseline
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8 16 8 16

78°F

70°F

Example thermal comfort comparison in one zone

12.3% 0.6%

InterventionExceedance percentage of 
total occupied hours

Hour

Baseline
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Sacramento Municipal Utility District East Campus Operations Center (SMUD)

§ Five story, 200K ft2

§ LEED Platinum
§ Low WWR and well shaded
§ Single tenant; 900 occupants
§ Sacramento, CA

§ Cooling season weather
summary 2017-2019
§ Max: 111°F 
§ Daily averages

• Mean: 74°F | Range: 30°F
• Day-to-day variability: 2.7°F
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Baseline Intervention

Group A and B 
zones cool 
whenever 

needed during 
the day or night

Group A zones cool only 
from morning to early 

afternoon

Group B zones cool only 
during the night

§ Baseline: May – Nov 2017
§ Controls implemented in Siemens 

Apogee system
§ Split zones into two groups
§ Intervention: May – Nov 2018
§ Compared results

Tested new control sequences
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SMUD radiant system thermal comfort performance in all zones

Variability: 0.42°F
Group A: 0.46°F
Group B: 0.35°F
Exceedance: 8.9%

Variability: 0.29°F
Group A: 0.28°F
Group B: 0.30°F
Exceedance: 1.1%

Baseline Intervention
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SMUD radiant system zone performance

Radiant system operation
§ Proxy for pump consumption
§ Actuated far less time
§ Daily average ON time 

• Baseline: 2-4 hours
• Intervention: 0.5 - 1 hour 

§ Some days does not turn on at all
Morning &
Afternoon

Night
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Resources

Please share, use and give us feedback.
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Free webtool (steady-state performance): radiant.cbe.berkeley.edu

Applications:
§ Heating and cooling
§ Floor and ceiling systems
§ Radiant systems with and without 

insulation and/or surface coverings
§ Metric and I-P units

Calculates:
§ Steady-state capacity (ISO 11855)
§ Number of circuits, pipe length and 

pressure drop
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Free webtool (transient performance): radiant.cbe.berkeley.edu

§ Transient results from 
over 2.5 million 
simulations

§ 13 user selectable design 
parameters incl. time and 
duration of operation 

Outputs
§ 24-hour cooling day 

design values
§ Surface heat flux
§ Hydronic heat capacity
§ Operative temperature
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Controls publicly available in resources: radiant.cbe.berkeley.edu

§ Sequences of operation available

§ English language, editable Word 
document

§ Can be implemented in existing 
automation systems

§ EnergyPlus examples available

§ Available as a measure in OpenStudio

Resources
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Design concept leveraging thermal 
storage
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Example design concept leveraging thermal mass

Daytime 
(45-60 °F water)

Night-time 
(60-68 °F water)

§ All-electric: Air (or ground) 
source heat pump for 
heating and cooling

§ Dedicated outside air 
system (DOAS) and radiant 
can operate at different 
times and different 
temperatures, using the 
same heat pump

§ Reduced design capacity
§ Closed circuit cooling 

tower (fluid cooler) for 
economizer operation

80-90% of annual 
radiant cooling

~50% of annual 
DOAS cooling
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Closing remarks
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Annual grid greenhouse gas emissions 

Source: Recurve.

When solar panels 
generate power. 
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Need for energy storage

§ Getting the storage we 
need to make the grid 
renewable is a huge 
challenge.

§ Storing energy in 
concrete is as cheap and 
easy as it’s going to get. 

Source: Recurve.
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New HVAC designs should 
leverage inherent thermal storage

in buildings.
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Questions?

Paul Raftery
p.raftery@berkeley.edu
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