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Overview

Objective

§ Develop new controls for high |
thermal mass radiant systems

Approach
§ Interview experts

§ Review controls and trend data
from existing buildings

§ Develop new controls and
Iteratively test in simulation

§ Demonstrate in two buildings
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Interviews with designers

§ Interviewed 11 prominent professionals who
have designed over 330 radiant cooled
buildings

Findings

§ Generally a wide diversity of design and
control solutions - reveals opportunities for
standardization and improvement

§ Very rarely leverage thermal mass to shift load.

Example results: Radiant zone control device

How do you control radiant zones? #
Two position zone valves 6
Modulating zone valves 4
Pumps with 3-way control valves at the zone 3
Constant speed pump 1
Variable speed pump 1
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Trend data from a radiant building (in July)
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Motivation
How can we help designers

benefit from the load shifting potential
of radiant systems?
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Simulation results: Common control strategy

—— Indoor air
Results from a single zone === Mean radiant
i I ; === Operative
energy simulation on the cooling
: = = Floor surface
design day.

Conditions
§ Variable flow

§ Constant temperature
(18 °C | 64 °F)

§ Modulating valves
0.5 °C (1 °F) band

Advantages = o
. . m R adiant
§ Simple, familiar controls - = Floor surface
- =« \entilation
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Effect of different operating times
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Effect of different operating times

— |Indoor air

=== Mean radiant

Conditions

§ Constant temperature
(18 °C | 64 °F)

§ Constant flow
(two position valves)

§ Constant duration of
operation (9 hours)

§ Varying time of operation

== (Jperative

= = Floor surface

Result
§ Can maintain comfort

. === Total
regardless of time of o
. m R adiant
Operathn = = Floor surface
-« = Ventilation
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Design/operation possibilities: Afternoon shutoff

10

Conditions
§ Constant temperature
§ Constant flow (on/off valves)

§ Operates during the morning
and early afternoon

Advantages

§ More uniform daily comfort
conditions

§ Reduces peak energy charges

§ Avoids building peak demand
charges

— |Indoor air
=== Mean radiant
== (Jperative

= = Floor surface

=== Total
m— R adiant
= = Floor surface

- == Ventilation

78

1 Less variation than simple
1 proportional controller
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Design/operation possibilities: Daytime shutoff
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Design/operation possibilities: Constant flow

[}
(&)

———T T
o]
I

T
[
w

——
N

[goTeJnleJedme I

T
~J

T
D
o O O

LELELEL W
(4]

[zw/M] peo| Buljoo)d

78
—— Indoor air 1
COnditiOnS === Mean radiant 76:
=== Operative L]
§ Constant supply temperature 4 o ace o ]
°F higher than previous cases: 27
68 °F (20 °C) g ]
§ Operates 24 hours per day E E
701
681 : : ———
Advantages — ]
§ Low peak plant load £20]
. . e >
§ Small chiller, low initial cost i 15
§ High supply water 8.,
w== Total ° ] BT L
temperatures w— Radiant g 5: J‘*"_'____..--—-_______;_.—— _:"‘-.. ” —
- = Floorsuface 8 | =-eee_._ ... - e *
-- - Ventilation © ol ; B S — !
7121 4h 8h 12h 16h 20h

12 Time of day



13

Controls for radiant systems
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Overview of the controls (sequences publicly available)

§ First loop responds to slab temperature

and controls the radiant zone valve Preferred: Pulsed flow

Alternate: Open/close

§ Second control loop adjusts slab
setpoint once per day based on previous Slab

day’s zone conditions. setpoint
+ l Zone valve l
§ Choose enabled time period each day. l controller l
Radiant system is disabled at all other
times.

§ Heating or cooling mode separated by

Zone
loads

Peak
daily air
temp

at least one day

§ Supplemental zone cooling/heating Proportional
systems: controller
8 Prioritizes radiant system

§ Limits systems operating in opposing
heating/cooling modes on the same day

14

Comfort
setpoint
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Example cooling day operation from field study demonstration

= COmfort bounds 80
Safety factor
Enabled period ™
Occupied period %' 4
‘E > Indoor air max Error
S N
= |ndoor air E b-g‘_‘?@_ﬂ
— Slab Reset slab SP at
Slab setpoint 70—t 0CCUpiedhours

- [\]aNIfOld valve

On
Oﬁ—IL—
0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00
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Example thermal comfort comparison in one zone

Baseline

Daily air temperature profiles

Intervention

16
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Example thermal comfort comparison in one zone

Baseline Average day-to-day Intervention
variability
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Example thermal comfort comparison in one zone

Baseline ~ Exceedance percentage of
total occupied hours

Intervention
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Sacramento Municipal Utility District East Campus Operations Center (SMUD)

8§ Five story, 200K ft2

§ LEED Platinum

§ Low WWR and well shaded

§ Single tenant; 900 occupants
§ Sacramento, CA

§ Cooling season weather
summary 2017-2019

§ Max: 111°F

§ Daily averages
* Mean: 74°F | Range: 30°F
« Day-to-day variability: 2.7°F

19
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Tested new control sequences

® Baseline 8 Intervention

§ Baseline: May — Nov 2017 = 1%
§ Controls implemented in Siemens E
Apogee system % | Lh
§ Split zones into two groups % i
§ Intervention: May — Nov 2018 .

§ Compared results
0 2 4 6 8 10 12 14 16 18 20 22

Baseline Intervention

Group A zones cool only

Group A and B from morning to early
zones cool afternoon

whenever

needed during

the day or night Group B zones cool only
during the night

20 Oct 2019



SMUD radiant system thermal comfort performance in all zones

21
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SMUD radiant system zone performance

Radiant system operation B Group A E3Group B

§ Proxy for pump consumption 480

Baseline Intervention

§ Actuated far less time

W
(o))
o

§ Daily average ON time

» Baseline: 2-4 hours
e |ntervention: 0.5 - 1 hour

§ Some days does not turn on at all

Morning &
Afternoon

120 l nght

Daily average number of
minutes radiant system is ON
N
I
o
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Resources

Please share, use and give us feedback.
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Free webtool (steady-state performance): radiant.cbe.berkeley.edu

Applications:
§ Heating and cooling
§8 Floor and ceiling systems

§ Radiant systems with and without
insulation and/or surface coverings

§ Metric and I-P units

Calculates:
§ Steady-state capacity (ISO 11855)

8 Number of circuits, pipe length and
pressure drop
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Free webtool (transient performance): radiant.cbe.berkeley.edu

§ Transient results from
over 2.5 million
simulations

§ 13 user selectable design
parameters incl. time and
duration of operation

Outputs

§ 24-hour cooling day
design values

§ Surface heat flux
Hydronic heat capacity
§ Operative temperature

wn
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STEADY STATE I TRANSIENT \ RESOURCES
Is 1s an alpha version of the tool that is actively under development. Expect bugs and please let us know about them by email if you find one.

PERMALINK

IMPERIAL

CUSTOM PLOT AXES
Zone Orientation

South

Window to Wall Ratio

0.2

Radiant Operation Start Time

0

Radiant Operation Duration

8 hour

Supply Water Temperature

55 °F

Design Water Temperature Difference

288°F

Tube Spacing

5.981in

Inside Pipe Diameter

0.351in

Maximum Loop Length

300 ft

Space Type

office

Night Time Plug Load Baseload Fraction

01

Heat Gain

Low

Active Surface

Floor

Heat Transfer Rate [Btuw/(hr %)

Operative Temperature "F

Water Flow Rate 10.7 gal / min
[ Suriace Heat Flux [___] Hydronic Cooling Load Heat Gains
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Controls publicly available in resources: radiant.cbe.berkeley.edu
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Sequences of operation available

English language, editable Word
document

Can be implemented in existing
automation systems

EnergyPlus examples available

Available as a measure in OpenStudio
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Design concept leveraging thermal
storage
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Example design concept leveraging thermal mass

§ All-electric: Air (or ground) Daytime Night-time
source heat pump for (45-60 °F water) (60-68 °F water)
heating and cooling

§ Dedicated outside air —  —o0% of annual —B0-90% of annual
system (DOAS) and radiant 7 | /|1 DOAS cooling — | //radlant cooling
can operate at different o Fid
times and different Heat pump I Heat pump ‘
temperatures, using the — Y ] :
same heat pump >3 >3 3 >3

§ Reduced design capacity D N D

§ Closed circuit cooling : d :
tower (fluid cooler) for T D%thls

economizer operation

‘ Radiant manifolds

Yol
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Closing remarks

Oct 2019



Annual grid greenhouse gas emissions
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Need for energy storage

Average System GhG Emission
(Metric Ton/MW)

§ Getting the storage we T
need to make the grid .
renewable is a huge
challenge.

§ Storing energy in
concrete is as cheap and
easy as it’s going to get.
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Month
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Source: Recurve.
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New HVAC designs should
leverage Iinherent thermal storage
In buildings.
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Questions?

Paul Raftery
p.raftery@berkeley.edu
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