

JANUARY 12-16 // AHR EXPO JANUARY 14-16

Seminar 15 - Occupant-centric Control Technologies: Assessing Comfort, Energy Use and Cost Tradeoffs

Personalized Comfort Modeling for Occupant-centric Environmental Control

Stefano Schiavon, PhD

Center for the Built Environment UC Berkeley

schiavon@berkeley.edu

Acknowledgements

- Joyce Kim, Gail Brager, Shichao Liu, Paul Raftery CBE, UC Berkeley
- Costas Spanos, Ming Jin, Yuxun Zhou EECS, UC Berkeley
- Toby Cheung, Elliot Gall SinBerBEST
- Bill Nazaroff CEE, UC Berkeley
- This work was supported by: California Energy Commission, Singapore National Research Foundation, Center for the Built Environment, Siebel Institue.

Indoor Environmental Quality survey

How satisfied are you with the temperature of your workspace?

Karmann, Schiavon, Arens 2018 Percentage of commercial buildings showing at least 80% occupant satisfied with their thermal comfort

Building occupant satisfaction

CBE survey on 351 bldg. and 52,980 occupants

Frontczak, Schiavon et al. 2011 Occupant satisfaction and IEQ Indoor Air

Building occupant satisfaction

CBE survey on 351 bldg. and 52,980 occupants

Frontczak, Schiavon et al. 2011 Occupant satisfaction and IEQ Indoor Air

Temperature satisfaction for radiant vs. all-air systems

Radiant and all-air spaces have equal indoor environmental quality with a tendency towards improved temperature satisfaction in radiant buildings

Climatic chamber thermal comfort study in Denmark

How accurate is the PMV-PPD model?

PMV predicted thermal sensation correctly only one out of three times

PMV had a mean absolute error of one unit on the thermal sensation scale

Cheung, Schiavon, Parkinson, Li, Brager (2019) Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II

Desk fan, foot warmer, heated and cooled chair

Energy savings

500 - 1500 W

2-100 W

Energy savings

Wider dead band reduces HVAC energy 7-15% per degree C

Schiavon and Melikov 2008 <u>Energy saving and air movement</u> Energy and Buildings Hoyt et al. 2015 <u>Extending air temperature setpoints</u> Building and Environment

Personal comfort systems and models

Modified from Kim, Schiavon, Brager 2018 Personal comfort models - a new paradigm in thermal comfort Building and Environment

Personal comfort model is a new approach to thermal comfort modeling that predicts individuals' thermal comfort responses, instead of the average response of a large population

PCM could be based on:

- Environmental sensors
- Occupant feedback & behavior
- Physiological parameters

Kim, Schiavon, Brager 2018 Personal comfort models - a new paradigm in thermal comfort Building and Environment | Imagine: comfyapp.com and nest.com

Environmental sensors

Gall, Cheung, Luhung, Schiavon, Nazaroff 2016 Real-time monitoring of personal exposures to carbon dioxide Building and Environment

Occupant behavior with chair

Kim et al 2018 Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning B&E

Occupant behavior with chair

Kim et al 2018 Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning B&E

Physiological parameters

Liu, Ming, Das, Schiavon, Spanos (2018) Personal thermal comfort models based on physiological parameters measured by wearable sensors.

Physiological parameters

Liu, Ming, Das, Spanos, Schiavon (2019) Developing personal thermal comfort models with wearable sensors

Modeling process

Modeling process

Personal comfort systems and models

Modified from Kim, Schiavon, Brager 2018 Personal comfort models - a new paradigm in thermal comfort Building and Environment

Conclusions

- Personal comfort models produce individual-specific and contextrelevant predictions.
- They improve predictive power compared to PMV, Adaptive.
- The proposed framework provide a unified approach to develop and evaluate personal comfort models.
- Personal comfort models can be integrated into real-world systems (buildings, vehicles, aircraft, etc.) to enable intelligent comfort management.

Bibliography

- Karmann, Caroline, Stefano Schiavon, and Ed Arens. "Percentage of Commercial Buildings Showing at Least 80% Occupant Satisfied with Their Thermal Comfort." In Rethinking Comfort. Windsor Castle, UK, 2018.
- Frontczak, Monica, Stefano Schiavon, John Goins, Edward A. Arens, Hui Zhang, and Pawel Wargocki. "Quantitative Relationships between Occupant Satisfaction and Satisfaction Aspects of Indoor Environmental Quality and Building Design." *Indoor Air* 22, no. 2 (2012): 119–31. <u>https://doi.org/10.1111/j.1600-0668.2011.00745.x</u>
- Karmann, Caroline, Stefano Schiavon, Lindsay T. Graham, Paul Raftery, and Fred Bauman. "Comparing Temperature and Acoustic Satisfaction in 60 Radiant and All-Air Buildings." *Building and Environment* 126 (December 2017): 431–41. <u>https://doi.org/10.1016/j.buildenv.2017.10.024</u>
- Kim, Joyce, Stefano Schiavon, and Gail Brager. "Personal Comfort Models A New Paradigm in Thermal Comfort for Occupant-Centric Environmental Control." Building and Environment 132 (March 2018): 114–24. <u>https://doi.org/10.1016/j.buildenv.2018.01.023</u>
- Kim, Joyce, Yuxun Zhou, Stefano Schiavon, Paul Raftery, and Gail Brager. "Personal Comfort Models: Predicting Individuals' Thermal Preference Using Occupant Heating and Cooling Behavior and Machine Learning." Building and Environment 129 (February 2018): 96–106. <u>https://doi.org/10.1016/j.buildenv.2017.12.011</u>
- Kim, Joyce, Fred Bauman, Paul Raftery, Edward Arens, Hui Zhang, Gabe Fierro, Michael Andersen, and David Culler. "Occupant Comfort and Behavior: High-Resolution Data from a 6-Month Field Study of Personal Comfort Systems with 37 Real Office Workers." Building and Environment 148 (January 2019): 348–60. <u>https://doi.org/10.1016/j.buildenv.2018.11.012</u>
- Cheung, Toby C.T., Stefano Schiavon, Elliott T. Gall, Ming Jin, and William W Nazaroff. "Longitudinal Assessment of Thermal and Perceived Air Quality Acceptability in Relation to Temperature, Humidity, and CO2 Exposure in Singapore." Building and Environment 115 (April 2017): 80– 90. <u>https://doi.org/10.1016/j.buildenv.2017.01.014</u>
- Gall, Elliott T., Toby Cheung, Irvan Luhung, Stefano Schiavon, and William W Nazaroff. "Real-Time Monitoring of Personal Exposures to Carbon Dioxide." Building and Environment 104 (August 2016): 59–67. <u>https://doi.org/10.1016/j.buildenv.2016.04.021</u>
- Liu, Shichao, Ming Jin, Hari Prasanna Das, Costas J Spanos, and Stefano Schiavon. "Personal Thermal Comfort Models Based on Physiological Parameters Measured by Wearable Sensors." In Rethinking Comfort, 11. Windsor, UK. 2018.

Questions Joyce Kim joyce_kim@berkeley.edu Stefano Schiavon <u>schiavon@berkeley.edu</u>

