Innovative Low-Energy Occupant-Responsive HVAC Controls and Systems

Fred Bauman, Paul Raftery, Stefano Schiavon, Joyce Kim, Soazig Kaam, Ed Arens, Hui Zhang, Lindsay Graham *CBE*

Karl Brown, Therese Peffer, Carl Blumstein *CIEE/CITRIS*

David Culler, Michael Anderson, Gabe Fierro UCB Electrical Engineering and Computer Science

HVAC Systems

Hwakong Cheng, Jeff Stein Taylor Engineering

Gwelen Paliaga, Abhijeet Pande TRC Energy Services

Project overview

- 3 ¹/₂ year project: started September 2013; ended March 2017
- Funding: \$1.6M from CEC/PIER; \$175K match funding from CBE
- Research team: UC Berkeley: CBE, CIEE, EECS Taylor Engineering, TRC Energy Services

http://www.cbe.berkeley.edu/research/occupant-responsive-hvac.htm

Can we give occupants control over their own comfort *and* save energy

Integration of innovative technologies

Target areas for Changing the Rules

- 1. Measurement and actuation
- 2. Personal comfort systems
- 3. Occupant vote-based HVAC controls
- 4. Zone control
- 5. Air handling unit control
- 6. Codes and standards

Sutardja Dai Hall (SDH), UC Berkeley Source: Hathaway Dinwiddie

Changing the Rules: Measurement and actuation

Measurement and actuation: sMAP

- Use the Simple Measurement and Actuation Profile (sMAP) software
- Developed at the UC Berkeley Electrical Engineering and Computer Science Department
- Easily deployed in both new and existing buildings
- Allows actuation over BACnet *independently* from the BMS software
- Take a look: <u>www.openbms.org/dashboard</u>

sMAP allows rapid access and visualization of data from different sources

Changing the Rules: Personal comfort systems

CBE personal comfort chair

- Heated and cooled chair
- Provides individual control
- Saves energy by allowing wider HVAC temperature setpoints
- 50 chairs completed
- Temperature, humidity, occupancy & usage data collected and communicated wirelessly to sMAP server

Field studies using PCS chairs

Sites

- Sutardja Dai Hall (SDH), UC Berkeley (Jul-Oct 2015)
- San Mateo County (SMC), Redwood City (Apr-Oct 2016)

Field deployment of digital PCS chairs

- 15 participants @ SDH (8 females, 7 males)
- 40 participants @ SMC (21 females, 19 males)
- Chair data: 4.8M entries @ 1-min intervals

Measurements of chair users

- Occupant surveys over 95% acceptability
- Indoor environmental conditions
- PCS chair usage

SMC 5th floor: Deployed chairs

PCS chair study: 2 chairs in same VAV zone

Changing the Rules: Occupant vote-based HVAC controls

Background

- Comfy, commercially available product from start-up company of former UC Berkeley students (Elec. Eng. & Computer Science, CBE)
- Occupants make comfort requests
- Integrates with HVAC controls

Results from San Mateo County

- Started with zone temperature float range of 70-74°F
- Expanded in steps to 69-76°F with no reduction in comfort satisfaction
- Response to Comfy was positive
- Building renewed agreement

Comfy on a mobile device Image: Comfy

Changing the Rules: Zone control Time-averaged ventilation (TAV) principle

TAV controls the average airflow of a zone to the ventilation rate required by code

TAV does not reduce the amount of fresh outside air entering the building **Zone airflow**

Changing the Rules: Air handling unit control

AHU control

What's the optimal supply air temperature?

AHU control: New SAT optimal cost reset

How is this new approach different from current best practice?

- Finds a building specific optimum, based on minimizing the combined costs of chilled water, fan, and reheat energy, subject to comfort constraints
- Fault tolerant
- Uses sMAP independent from BMS software
- Intervention study in SDH showed reduction in total HVAC energy costs of 29%
- Sequences are available for use

Changing the rules: Codes & standards

Beneficial outcomes for codes and standards

- ASHRAE Guideline 36P (to be published later in 2017)
 - Added TAV to draft Guideline
 - Considering adding cost-based SAT reset
- ASHRAE Standard 55
 - Added benefits of increased air motion
 - Added dynamic clothing model
- Title 24
 - Consider allowing different temperature setpoints when equivalent comfort is demonstrated
 - Consider adoption of new VAV control strategies in ASHRAE Guideline 36P
- Title 20
 - Consider new methods of test for PCS devices (heaters, fans, etc.)

Q&A

Fred Bauman fbauman@berkeley.edu

Paul Raftery p.raftery@berkeley.edu

Stefano Schiavon stefanoschiavon@berkeley.edu

Please take a moment to fill out the feedback form.

Final report will be posted on CBE website after review is finalized

