Resilient water supply and demand

Prakash Rao, Ph.D.

Symposium on the Water-Energy Nexus: Holistic Solutions for Climate Change and Resiliency

April 24, 2019

Outline

- Global and national water risks
- Water resiliency planning
 - Supply side
 - Demand side
- Future ideas for water supporting energy resiliency

Outline

- Global and national water risks
- Water resiliency planning
 - Supply side
 - Demand side
- Future ideas for water supporting energy resiliency

Water Crisis Globally

Global water crisis by the numbers

Global water demand is expected to increase by 55% in 2050 over 2000 levels

- 1.6B \rightarrow 3.9B living in water stressed areas

• Climate change could lead to a 40% increase in people living in water stressed areas

Organisation for Economic Co-operation and Development (OECD). 2012. OECD Environmental Outlook to 2050: The Consequences of Inaction. Paris: OECD. Schewe J., Heinke, J., Gerten, D., Haddeland I., Arnell NW., et al. 2014. Multimodel assessment of water scarcity under climate change. PNAS 111(9): 3245 – 50.

Water Shortages in the US

- 40 of 48 responding state water planners anticipate water shortages in their state next ten years
- 42 anticipate water shortages in the next 10 to 20 years

U.S. GAO (2014) Freshwater Supply Concerns Continue, and Uncertainties Complicate Planning.

Long term water stress in the US

Surface Water Supply + Groundwater Supply + Return Flows

Outline

- Global and national water risks
- Water resiliency planning
 - Supply side
 - Demand side
- Future ideas for water supporting energy resiliency

Seawater desalination can provide supply stability

San Diego then (1991, 578 TAF)

San Diego now (2018, 518 TAF)

Drought forced MWD to cut supply by 30%

>25% from own sources, including ~10% from SWRO

Seawater desalination can provide cost stability

From San Diego Water County Authority Water Purchase Agreement for Claude "Bud" Lewis Carlsbad Desalination Plant, available at: <u>https://www.sdcwa.org/seawater-desalination</u>

Can seawater desalination play a larger role in providing potable water?

Fermanian Business & Economic Institute. 2010. San Diego's Water Sources: Assessing the Options. Equinox Center. Public Interest Energy Research (PIER). (2011). *Desalination Facility Design and Operation for Maximum Efficiency*. Water Research Foundation. Elimelech M, Phillip WA. 2011. The future of seawater desalination: energy, technology, and the environment. *Science* 333(6043):712-17 Potential energy impact under greater adoption of seawater desalination

- Potential impact of greater uptake: Supply 10% of water demand for stressed regions of the continental US with desalinated seawater from U.S. coastal areas
- Evaluated using open ocean intake RO system operating at stateof-the-art conditions (e.g., Carlsbad Desalination Facility) with water demand equivalent to 2010 public water demand (from USGS)

10% of public water supply for water stressed counties

Rao et al. 2018. Energy considerations associated with increased adoption of seawater desalination in the United States. *Desalination*.

For entire US		
	WaSSI > 1	WaSSI > 0.5
Water demand (MGD)	555	994
Total energy requirement (TWh/yr)	6.7	13.3
% of 2018 US electricity consumption	0.2%	0.3%

Context: Water supply is currently ~1% of U.S. electricity consumption; food processing uses 73 TWh; primary metals uses 134 TWh

Further considerations

Whole System Economic and	Whole System Economic and Operational Characteristics						
Fixed cost (\$)	Construction	Siting	Permitting	Land Use	Equipment	Construction time	
Variable cost (\$)	Labor	Chemicals	Maintenance	Parts	Disposal		
Energy cost (\$)	Electricity	Natural gas	Steam				
Operational characteristics	Water quality	Flow rates (m ³ /day)	Temperature (°C)	Pressure (kPa)	Energy (kWh)	Chemicals	Brine (m ³ /day)
	System lifetime	Modulation capability	Operation when under loaded	Capacity Factor	Availability (hours/year)	Operability with other components	Water recovery (%)
Water In Salinity/TDS (ppm) TOC (ppm) TSS (ppm) pH Marine life To Water Storage							
Temperature (°C) Pressure (kPa) Distance to plant (km)			Pre-treatment			To Discharge ontaminant concentration (ppm) hemicals (ppm)	
Non-potable water for dilution Chemicals Used/Added Pretreatment chemicals (ppm) Disinfection (ppm)		n discharge. ation ponds, land					
Re-mineralization (ppm) Adjustment for taste Cleaning chemicals (ppm)	ieralization (ppm) nent for taste ng chemicals (ppm)		 Fresh water Feed water 				
Energy In (Energy/olume of water pr • Electricity (kWh _e /m ³) • Equivalent electrical energy • Direct heat (kWh _{e.ec} • External waste hea • Temperature of the direct of	tensity oduced (kWh _{T,equiv} /m ³) y for: _{uiv} /m ³) t (kWh _{e,equiv} /m ³) r external waste he) pat (°C)		Post-treat Source: Circlepoint (http://w	ment	r byb)	Concentrate/Waste Concentrate/Waste Energy/Pressure Recovery Opportunity
Whole System Environmental Considerations							
Emission intensity (tCO ₂ /m ³) • CO ₂ e	emissions (tCO ₂ /m ³ of fr	eshwater produced)				
Marine life Concentrate disposal Consumables disposal and chemical use/disposal Consumables disposal and chemical use/disposal Electric grid impact Water system integration Co-location with power generators							

Rao et al. 2018. Energy considerations associated with increased adoption of seawater desalination in the United States. Desalination.

Outline

- Global and national water risks
- Water resiliency planning
 - Supply side
 - Demand side
- Future ideas for water supporting energy resiliency

Water management

Benefits

- Operational resiliency
 - 2015 CDP Water Report: Respondents from the Industrial and Consumer Staples sectors ranked the US as a top country for facilities at risk of water related issues
- Allows for growth and planning
- Cost savings
 - Not just water, but energy, chemicals, regulatory costs too
- Improved public image
- Helps EE program

Challenges

- Resources and technical assistance not widely available
- Water efficiency and management principles are less developed and promoted than energy efficiency and management principles
 - Less financial incentive to invest and/or reduce
 - But plenty of other drivers: regulation, business risk, community access,
- Lack of data

Observed Corporate Water Management Strategies

- 7 companies shared their water management strategies with DOE
- Topics addressed include:
 - Making the business case for water saving projects
 - Facilities and water sources on which to focus initial efforts
 - Establishing baselines and targets
 - Water efficiency measures implemented

Available at: <u>https://betterbuildingssolutioncenter.energy.gov/resources/corporate-water-management-strategy-manufacturers</u>

Making the business case

- Implement low or no cost actions (e.g. leak repair)
- Realize water savings as an ancillary benefit
- Connect water and sustainability programs
- Consider avoided risk, water availability concerns, local regulations when considering projects
- Use the "True Cost" of water: water volume, energy, chemicals, business risk, maintenance of equipment
 - Cummins calculated true cost to be 3-5x billed water costs
 - 10-12x for high energy/water intensive operations

Focusing initial efforts: Facilities

Cummins water performance index

UTC Global Water Conservation Guidance Document

👺 United Technologies

GLOBAL WATER CONSERVATION GUIDANCE DOCUMENT

Water use has akeys been an important and of UTC's Environment H-wath and Safety conservation packs. From apbioal perceptive, poundation quorish and shortages of renewable reshwater supply necessitaties that sustainability planming include water management beet practices. In addition to being institutiation in the energy and cimitad brains, water supply increases the potential to significantly impact how and were manufacturing also operate. UTC has a long and successful history of implementing values conservation grantees. Since 2000 UTC has needed to addition to being of implementing values conservation grantees. Since 2000 UTC has a long and successful history of implementing values conservation grantees.

what couperpion 2.9%. Several classification takes through a wave of dome risk factors prive as local water quality conditions. Water quality statistics are glycally published to water appliers or municipatities. Chew no factors include range cost and increased the state factors include range cost and increased the state of the state of the state of the state of the public values scatchy assessment and beat practices in managing water risks of the corporation and its supply chain. You will also find case dualies and example chain You will also find case dualies and example (The state.)

TABLE OF CONTENTS

Current state assessment Baseline consumption and water balance Continuous improvement (key areas to focus on) Required Actions Minimum expectations for best practices Case studies

BEST PRACTICES Water balance Leak management Eliminate ence-though cooling Cooling tower management Flow meters Low flow futures and flow resistors Rinse tank overflow Xerscaping Recycle process wastewater Rain water harvesting

Establishing baselines and targets

Driver	# of partners (out of 7)
Regulation of water consumption and use	2
Overall cost of water	3
Energy benefits from water reduction	5
Availability of suitable water supplies	4
Risk associated with lack of access to water	4
Environmental stewardship/corporate sustainability	7
Other	3

"Other" included costs and risks associated with wastewater and business continuity

Data collection methods

- Observed data collection methods
 - Meters for billed sources
 - Combination of estimation techniques and meters for other sources
- Most data collection occurred at the facility level
- Water use at the end-use level generally not tracked

Water use Category	Applicable to company (out of 7)	Able to track or estimate usage volume (out of 7)
Production and in-product use	5	3
Auxiliary processes (e.g., pollution control)	3	0
Cooling and heating (e.g., cooling towers and boilers)	6	2
Indoor domestic use (e.g., restrooms, kitchens, laundry)	6	1
Outdoor (e.g., landscape irrigation)	4	1

Water efficiency measures

Type of Measure	Examples of Type of Measure
Leaks	 Leak detection and correction
Monitoring and	 Adjustment on control valves to improve water efficiency
controls	 Automate controls on continuous flow streams
	 Change faucets to auto type faucets
	 Install low flow fixtures
	 Install automatic shutoff valves
	 Implement procedures to monitor and adjust the flow on water cooled equipment
	 Monitor water quantity and quality
	 Monitor cooling tower cycle of concentration
Recycle/reuse	 Eliminate once through cooling, including installing closed loop chillers
	 Recycle non-contact cooling water
	 Modify existing equipment to eliminate non-contact water cooling
	 Clean and recirculate treated contact water
	 Install semi-closed loop water system
	 Reuse process water, including capturing formerly discharged cooling tower
	wastewater for use in a recirculating chilled process water loop system.

Water efficiency measures cont.

Type of Measure	Examples of Type of Measure
Substitute water	 Replace water with other coolants (i.e. air and antifreeze in a closed loop circuit)
	 Replace water cooled compressors with air cooled compressors
	 Replace water cooled chilled water system with air cooled system
	 Install air cooled systems in place of non-contact cooling water
	 Replace water cooled vacuum pumps with air cooled units
	 Install waterless urinals throughout the facility
Training	 Increase water usage awareness throughout the facility
	 Train operators in the most water efficient procedures
Water storage	 Design of rinse tank overflow systems
	 Install rain water harvesting system
	 Capture and store water during facility shutdowns for future use, instead of
	discharging to sewers

Thank you!

Collaborators on desalination analysis

Arian Aghajanzadeh

Paul Sheaffer

William R. Morrow III Energetics: Caroline Dollinger, Sabine Brueske US DOE: Joe Cresko

ADVANCED MANUFACTURING OFFICE