SFO SAN FRANCISCO INTERNATIONA

Symposium on Optimizing Radiant Systems

Wednesday, October 23rd, 2019

Agenda

- 1. Sustainability as a Guiding Principle
- 2. Harvey Milk Terminal 1 Project Description
 - a. Energy Strategies
- 3. Radiant Heating / Cooling + Displacement Ventilation
- 4. Commissioning Activation Simulation
 - a. Operational Readiness and Transition (ORAT)
- 5. Cost and Benefits
 - a. Triple Bottom Line Cost Benefit Analysis

Sustainability as a Guiding Principle

1

SFO Strategic Sustainability Goals

FROM VISION TO ACTION

Harvey Milk Terminal 1 Sustainability Goals

Harvey Milk Terminal 1

§ Terminal 1 Center

- § Check-In
- **§** Security Checkpoints
- **§** ICS Baggage Handling System
- **S** Construction: 2016 2023
- S Project Budget: \$1.4 B
- S Design-Builder
 - Ø Hensel Phelps
 - **Construction Company**
 - Ø Gensler
 - Ø Meyers+
 - Ø Critchfield Mechanical, Inc.

Harvey Milk Terminal 1

- **§** Boarding Area B
 - § 28 Gates (Includes 7 International Swing Gates)
 - Multiple Tenant & Airline Lounge Spaces
 - § Aircraft Apron
 - **S** Construction: 2016 2021
 - **§** Project Budget: \$865 M
 - **§** Design-Builder
 - Austin Webcor JV
 - Ø HKS + Woods Bagot

Ø ARUP

Previous Terminal 1

- § Initiated operations in 1961
- § Renovated mid-1980s
- § Operated at 4.7 million annual enplanements

Harvey Milk Terminal 1

§ Designed for:

- **Ø** 8.8 Million Annual Enplanements
- Ø 17 Million Passengers (70% Increase)
- **Ø** Operational Flexibility
- **Ø** Exceptional passenger Experience
- **Ø** Celebration of Bay Area Naturalism
- **Ø** SFO Net Zero Goals

Energy Strategies 223

2a. Horizontal & Vertical Transportation: ~1EUI

- **§ Escalators and Moving Walks** "Go Slow" Mode
- **§ Elevators** Energy Recovery

Check-In Lobby

Regenerative Elevator

	BAB	ПС
BENEFIT	Reduced Energy	
EUI REDUCTION	~0.5	~0.3-0.5

2a. Daylight + Glare Strategies: <1 EUI

*Note: All perspective images are depicted at June 21, 6:00pm PST influencing the appearance of dynamic shading options.

2a. Dynamic Glazing

Dynamic Glazing	(BAB only)	Dynamic Glazing (T1C only)				
BENEFIT	Glare Control	BENEFIT	Reduced Energy, Glare Control			
EUI REDUCTION	0	EUI REDUCTION	~1-2			

2a. Ground Service Equipment (GSE)

- Transition to Electric GSE
- EV Charging Stations
- Metering Energy Consumption

Process Loads		
	BAB	TIC
BENEFIT	Manage energy o	consumption
EUI REDUCTION	0	0

2a. Aircraft Ground Efficiencies

400Hz Power & Pre-Conditioned Air to Aircraft

- **§** Reduced Energy Use
- § Reduced Cost
- **§** Improved Air Quality
- Improved Passenger Comfort

2a. Baggage Handling System (BHS): ~6 - 10 EUI

- **§** Energy Reduction = $\sim 50\%$
- **§** BHS EPD
- **§** Totes HPD
- § Reduced material use
- ICS represents ~6% Project Carbon

Footprint

ENVIRONMENTAL PRODUCT DECLARATION

INDIVIDUAL CARRIER SYSTEM

INDIVIDUAL CARRIER BAGGAGE HANDLING SYSTEM

BELIMER Group is an international manufacturing leader in intralegation in the fields of converging, toading, packaging, sortation, and distitution technology. For up, sustainability means a balaxino between environmental sensibility, economic subcess, and social responsibility. Emergy efficiency, environmental product design are just an important up anodring accidents and other health mikil.

For more information visit www.becmergroup.com

2a. Heat Recovery Ready

- **§** Larger pipe size
- § Additional pumps
- **§** Temperature adjustments

2a. Radiant Heating & Cooling

2a. Photovoltaic Panel System: ~19 EUI

PV Panels (BAB only)						
BENEFIT	Reduced Energy					
EUI REDUCTION	~11					
PV SYSTEM SIZE	1,043 kW					
EST. ANNUAL OUTPUT	1,425,300 kWh/yr					
ELECTRICITY COST (\$/kwh)	\$0.131/kWh					
ANNUAL ENERGY SAVINGS	\$186,714.30					

2a. Advanced Filtration

Notes:

PCO = Ultra-Violet Photocatalytic Oxidation BPS = Bonded Particulate Structure VOC = Volatile Organic Compound

- S Naphthalene: 0.053 µg/m3
- **§** Formaldehyde: 9 µg/m3

Advanced Filtration

	BAB	TIC
BENEFIT	Improved Ind Air Quality	oor
EUI IMPACT	~0.2	25

2a. Energy Metering

Electricity

- **§** T1C and BAB separately
- **§** Variable Frequency Drives for Mechanical
- **§** Lighting 1x per panel
- S Distribution 1x per panel (BHS, elevators, 120V circuits, etc.)
- Apron Controls PBB, PC Air, and GSE

Water (potable and recycled)

- **§** T1C and BAB separately
- § Tenants

Chilled and hot water

- **§** T1C and BAB separately
- **§** BTU Meters (Tenants)

Gas

- **§** Food & Beverage Tenants
- Airline Lounges

Energy Use Intensity (EUI) Summary

• Approved EEMs: Radiant Heating & Cooling, Photovoltaics, Advanced Filtration, Vertical Transportation & Dynamic Glazing

• All EUI values include process loads

Radiant Heating / Cooling + Displacement Ventilation

3

3. Radiant Heating & Cooling

Experiential & Operational Considerations					
Passenger & Employee Experience +++	Better thermal comfort, rapid response time, additional noise absorption for acoustic comfort, minimal visual profile				
Future Flexibility ++	Panels are easily reconfigured				
Innovation Acceleration ++	SFO T3, BAE and Dublin Airport are the only airports to use radiant ceilings				
Operational Factors ++	Tilt-down access for maintenance, push-fit connectors				
Schedule Implications + \ -	Needs early coordination with other mechanical components, glazing selection, and interiors				
Other Decision Factors +++	Minimizes displacement ventilation system size				

Environmental & Financial Performance					
EUI Reduction (kbtu/sf)	-12.7				
Energy Savings (\$/yr)	\$112,000				
Simple Payback (yrs)	62				
EUI Unit Cost (\$/EUI)	\$551,000				
Carbon Reduction (mTons/yr)	503				
Avoided Cost of Carbon (\$/yr)	\$25,900				

3. Radiant Heating and Cooling

Check-In Lobby

3. Radiant Heating & Cooling

3. Radiant Heating and Cooling

Hold Rooms

Commissioning, Activation, Simulation

4

5. Commissioning, Activation, Simulation (ORAT)

5. Commissioning – Fine Tuning

5. Operational Readiness & Transition: Trials, Training, Simulation

Cost and Benefits

5

4. Triple Bottom Line Cost Benefit Analysis

SFPUC Hydro Electric Power

	Financial NPV		Social & Environmental NPV		Sustainable NPV	Sustainable BCR	
Green Roof	-\$1,052,555	+	\$6,340,104	=	5,287,549	4.07	
Electrochromic Glazing	-\$3,287,126	+	\$6,255,624	=	2,968,498	1.90	
Motorized Window Shades	-\$7,593,481	+	\$6,255,624	=	-1,337,857	0.84	
Interior Landscaping	-\$8,480,450	+	\$11,392,549	=	2,912,099	1.34	
Radiant Heating and Cooling	-\$2,134,000	+	\$2,205,800	=	71,800	1.01	
Ground Source Heat Pump	-\$5,821,573	+	\$594,152	=	-5,227,421	0.40	
PG&E Power							

Radiant Heating and Cooling	-\$2,134,000	+	\$2,523,400	=	389,400	1.06	
0 0					-		

Benefit Cost Ratio (BCR) **Benefit cost ratio (BCR)**: Total projected future benefits divided by the total costs of the project, discounted to current dollars. A BCR between 0 and 1 indicates costs exceed benefits, while a ratio greater than one indicates benefits exceed costs.

4. Triple Bottom Line Cost Benefit Analysis

Cost/Benefit Category	Present Values (\$)		
Pollutants from Natural Gas Use Carbon Emissions from Natural Gas Use	685,800 1,520,000		So Envir
Capital Expenditures	(6,500,000)	Fina	cial an onme
Electricity Costs	1,198,000	ancia	d ntal
Natural Gas Costs	3,168,000	<u>e</u>	
2,945.5 Potential Houses Powered by the Electricity Saved CO ₂ 48,251 Tonnes of CO2 Equivalents Avoided	214.07 Cars Off The Road NO _x 109,213 Pounds of NOX Avoided		
PM _{2.5} 5,053 Pounds of PM2.5 Avoided	SO ₂ 532 Pounds of SO2 Avoided		
VOC 4,876 Pounds of VOC Avoided			

Q&A

Contact: Anthony.Bernheim@flysfo.com

Thank you

