Construction and Energy Costs for Radiant System in California Bay Area

Symposium: Optimizing Radiant Systems

Oct 23, 2019
Acknowledgements

- This work was done when the presenter worked at Taylor Engineering with support from Hwakong Cheng and Steve Taylor

- This study was funded by California Energy Commission Electric Program Investment Charge (EPIC) under the Optimizing Radiant Systems for Energy Efficiency and Comfort project, led by Center for the Built Environment at UC Berkeley
Agenda

• Project overview
• Case study building
• Cost data
• How to reduce construction costs
• Energy performance
• How to reduce energy costs
Project Overview

Objectives
- Provide cost data for radiant systems in California Bay Area
- **Suggest opportunities to reduce cost and improve energy efficiency**

Approach
- Provide baseline and alternative design options
- Cost estimation by contractors
- Energy performance evaluation by EnergyPlus
Background

Status of VAV

- Predominant HVAC approach
 - Optimized construction process
 - Competitive market
- Design guidelines
 - Advanced VAV System Design Guide
 - ASHRAE Guideline 36

Status of radiant

- Small market share, mostly in low-energy and ZNE projects
- Limited design guidelines and tools
- Lack of familiarity by building construction industry
Case study building

Real building with radiant design

Simplified floor plan

- Open office with meeting rooms
- Total floor area 112,000 ft²

Building features

- Solar load control
 - Window-wall ratio 40%
 - Glazing U-value 0.4 and SHGC 0.28
 - Exterior overhang
- LED lights and daylight control
- Advanced plug load control

Image: EnergyPlus model of the case building
Radiant slab design

- High thermal mass radiant system with tubes in every ceiling slab
- 10 radiant zones per typical floor
- 13 DOAS VAV zones per typical floor
 - Demand controlled ventilation in large conference rooms

Radiant slab zoning plan (part of typical floor)

DOAS zoning plan (part of typical floor)
Radiant system design

Dedicated outdoor air system (DOAS)
- Design air flowrate: 19,400 cfm
- Changeover heating/cooling coil

Central plant
- Four-pipe air source heat pump
- Serves both DOAS and radiant slabs to reduce cost

Radiant design schematic
Construction costs

HVAC and controls only

Common mechanical elements NOT included

San Mateo labor rate

- Sheet metal: $123/hr
- Piping: $118/hr

Results

Average: $38.9/ft²
Construction cost breakdown

- Equipment: $8.1 (Contractor A), $6.9 (Contractor B)
- Sheet Metal: $0.3 (Contractor A), $0.4 (Contractor B)
- Labor: $4.0 (Contractor A), $4.3 (Contractor B)
- Material: $1.4 (Contractor A), $1.6 (Contractor B)
- Piping: $14.3 (Contractor A), $14.2 (Contractor B)
- Subs/Misc: $5.7 (Contractor A), $4.7 (Contractor B)
- Services/Markup: $5.6 (Contractor A), $6.1 (Contractor B)

20% of total cost: Equipment and Sheet Metal

44% of total cost: Labor
Piping labor breakdown

Radiant slab: $6.6/ ft2
Floor distribution + risers: $2.9/ ft2
Equipment Cost

Radiant equipment: $2.82/ ft²
DOAS AHU: $0.79/ ft²
ASHP: $2.71/ ft²
Impact of labor rate

- National average labor rate: $85/hr
How to reduce radiant system cost?
Facilitate the use of radiant mat

Costs

- Mats: \(~$4 - 6 /\text{ft}^2\)
- Loops*: \(~$6 - 8 /\text{ft}^2\)

Limitations for mats

- Maybe limited by shape and size of radiant zones
- May not be cost effective for smaller jobs (assembled on a made-to-order basis)

* For 6-inch tube spacing
Hydronic distribution layout: Multiple risers vs. single riser

- Strategically locate risers to minimize piping: 30% piping reduction
- Cost savings: $2.5/ft²
Use larger radiant tube spacing: 9” vs. 6 in”

- Loop design: ~$1.7/ft² of labor cost savings
- Mat design: 5-15% cost savings and 5% labor savings
- Thermal capacity: initial evaluation shows similar dynamic performance
Other approaches to reduce radiant costs

- Large vs. small radiant zones
- Consider no radiant tubes in ground or roof slab
- Use passive supplemental system strategically (For example, ceiling fans)
- Hydronic system type: 4-pipe vs. 2-pipe vs. mixed 4 and 2-pipes
- Reduce central plant equipment size with load shifting
- More details in the report*

HVAC annual site electricity

Total: 2.9 kBtu/ft²

- Cooling is 41% of total energy
- Fan energy is 34% of total energy
Central plant cooling and heating load

- Cooling energy use in winter months
- DOAS uses significant energy
How to reduce radiant system energy cost?
Potential for economizer to reduce cooling energy

Potential full airside economizer hours

Plant Cooling Load (kBtu/hr)

Temperature (°F)

06/15 24:00:00
06/16 12:00:00
06/16 24:00:00
06/17 12:00:00
06/17 24:00:00
06/18 12:00:00
06/18 24:00:00

Radiant_DOAS Radiant_Slab OADB DOAS SAT
Implement load shifting strategy to reduce demand

Radiant slab operates 6 am - 6 pm

Radiant slab operates 0 am-12 pm
Implement load shifting strategy to reduce demand

- Whole building electricity cost
- High performance design to minimize heat gain is key
Optimize DOAS supply air temperature control

- Neutral SAT
- OA reset
- Large deadband

Neutral Supply Air Temperature

Single Setpoint (OA Based Reset)

Deadband_CC OA Reset
Optimize DOAS supply air temperature control

- Use large heating/cooling setpoint deadband
- Reset supply air temperature higher with space humidity feedback
Approaches to reduce energy cost

- Take advantage of free cooling with waterside economizer (mild weather in particular)
- Implement load shifting strategy to reduce demand charge and equipment size
- DOAS design and control are critical
 - DOAS supply air temperature control is IMPORTANT
 - Avoid unnecessary oversizing of DOAS by strategically distributing the ventilation air
 - Decouple cooling source for radiant slab and DOAS in humid climates
- More details in the report*

There are opportunities for improving current practice!

Questions?
Thank You

Jingjuan (Dove) Feng
jfeng@trccompanies.com