

Outline

- + Decarbonizing Electricity
 - Let me count the ways
- + Solar PV + Battery Energy Storage
 - Important Implementation Issues
- + Load Shaping and Grid Harmonization
 - Why is this important?
- + Resiliency
 - Practical Considerations

Carbon-free Site Energy Production Options

Solar PV

Pros

- Mature Technology
- Pricing and designs stable
- Longevity
- No (or few) moving parts
- Modeling tools and information

Cons

- Area required
- Price to performance
- Long payback times
- Requires maintenance

Solar Thermal

Pros

- Higher efficiency
- Less costly than other technologies
- Good Incentives available

Cons

- Moving parts, hard to maintain
- Longevity
- Few vendors and little expertise
- Difficult to finance

Fuel Cells

Pros

- Onsite baseload generation
- Most are co-generation: heat + electricity
- Relatively small footprint
- Incentives available

Cons

- Not carbon free most use natural gas as a fuel
- Long term reliability?
- Financial viability of manufacturers
- Heat efficiency rarely meets design

100% Renewable Grid Energy

The easy way to go green?

+Electrical Utilities

PG&E example

- Solar Choice (50% or 100% solar)
- Regional Renewable Choice (25%-100% of usage, direct contract with developer)

+Community Choice Aggregators (CCAs or CCEs)

CleanPowerSF example

- Green (48% renewable, 40% hydro)
- SuperGreen (100% renewable)

+CA State Mandates (SB 100)

- 50% renewable sources by 2026
- 60% by 2030
- 100% decarbonized electricity by 2045

Solar + Storage Practical Considerations

Project Financing

The Challenge

- Increasing energy requirements for new construction and major retrofits
- Construction dollars are (almost) always scarce
- Energy generation and storage can add 10% or more to project costs

A Solution - Third-Party Financing

- Removes energy system costs from project capital requirements
- Focus scarce capital on mission critical facilities
- Expert energy design, construction, procurement contracts

Solar + Storage Practical Considerations

Project Delivery

The Challenge

- Who designs the generation and storage systems?
- Complex systems need to have solar and storage engineering experience
- Hard designs through EE firms often results in poor performing/expensive systems

Potential Solution - Design-Build

- Energy firms with expertise and procurement
- Expertise early in the design phase
- Separate competitive procurement
- Third-party financing options

Responding to utility grid capacity and stability

Load Shaping and Grid Harmonization

+ Grid Harmonization

- LEED Points, GridOptimal Metrics
- Title 24 TDV and local building codes
- Utility signals
 - + Tariffs (TOU pricing, Real-time Pricing)
 - + Demand Response (DR)
 - + Potential value streams
 - Resource Adequacy (RA)
 - Voltage and Frequency Regulation

Load Shaping and Grid Harmonization

Load Shaping

- TOU Bill Management/arbitrage
- Peak Shaving/Demand Charge Reduction
- Renewables Firming/self consumption

Altering the customer's load profile as presented to the utility

BESS Services by Market Sector

Resiliency

Practical Considerations

Resiliency adds time, complexity, and cost

Defining the needs

- What loads are critical?
- Duration of support?
- How will critical circuits be isolated?

<u>Does not improve project financial</u> <u>performance</u> (typically*)

- Critical capacity must be reserved
- Switchgear and load management equipment
- *Can offset costs of conventional backup

Resiliency

Practical Considerations

- + Capturing Value of Resilience (VoR)
 - Offsetting costs of conventional backup generation
 - LEED, GridOptimal metrics
 - Direct Impacts
 - Offsetting energy costs
 - Asset preservation (food, equipment, brand)
 - Staff impacts/efficiency
 - Sales
 - Indirect Impacts
 - Losses to local businesses
 - Childcare
 - Critical medical services
 - Emergency shelter

Decision Framework

Weighing all costs, risks and benefits

Risks/Costs

- 1. Paying more for energy = <10% increase
- 2. Campus parking lot reconfiguration
- 3. Staff and consultant time
- 4. Underperformance of systems

Costs/Risks Doing Nothing

- 1. Carbon emissions/environmental impact
- 2. Reduction of SGIP storage incentives and federal ITC
- 3. NEM 2.0 replace by NEM 3.0, reducing value of solar
- 4. Dramatic increases in utility energy prices
- 5. Loss of potential energy cost savings

Benefits

- 1. Carbon Reduction/Environmental Stewardship
 - Agency and state environmental goals
- 2. Resiliency to Grid Outages
 - Preservation of critical functions
 - Emergency Services
 - Staff impacts/efficiency
- 3. Community Support
 - Emergency shelter
 - Critical medical services support
- 4. Take advantage today's strong SGIP and ITC incentives
- 5. Parking lot shading
- 6. Potential for STEM curriculum integration

