Optimizing Radiant Systems For Energy Efficiency and Comfort

Carlos Duarte, Paul Raftery, Stefano Schiavon, Fred Bauman, Caroline Karmann, Jovan Pantelic, Jonathon Wooley, Megan Dawe, Lindsay Graham, Dana Miller

Overview

Objective

- Investigate the feasibility of replacing vaporcompression based cooling
- Develop and experimentally test control strategies for HTMR
- Develop web-based tools and guidelines for HTMR

Approach

Modeling/simulation and field studies

Funding

CEC EPIC program and CBE match funding

Infrared picture of TABS system.

These studies focus on high thermal mass radiant systems (HTMR)

High thermal mass radiant

Differences in energy heat transfer

How fast do radiant systems response after a control change?

Ning, Baisong, Stefano Schiavon, and Fred S. Bauman. 2017. "A Novel Classification Scheme for Design and Control of Radiant System Based on Thermal Response Time." *Energy and Buildings* 137 (February): 38–45. <u>https://doi.org/10.1016/j.enbuild.2016.12.013</u>.

HTMR presents challenges due to its high thermal mass, yet it opens the opportunity for innovative design and control options.

Radiant systems should use warmer water temperatures for cooling

Study type ○ Laboratory △ Field □ Simulation ◇ Steady-state heat balance Radiant type ● RCP ● ESS ● TABS ● Unspecified

Wet bulb temperatures from May to Oct. at the 90th percentile

Evaporative cooling feasibility increases with lower wet bulb temperatures

Center for the Built Environment | November 2021

Simulation procedure to find the warmest supply water temperature

Middle floor of commercial office building

- Envelope thermal properties set to minimum energy code requirements
 - ASHRAE 90.1-2016, Title 24-2016
- Design operative temperature: 26 °C (79 °F)
- Varied 24 total design parameters
 - Cooling plant start time & duration
 - WWR & orientation
 - Zone dimensions
 - Internal heat gains
 - Tube spacing, depth, diameter

Median percentage of waterside economizing operation

Managing zone heat gains improves high-temperature cooling

- 24-hour average heat gains are more important for high thermal mass radiant system design
 - Peak heat gains are important for supplemental cooling design
- 24-hour average HG ≤ 25 W/m² (8 Btu/hr-ft²) enables supply water temperatures greater than 15°C (59°F)

Increasing plant operation duration facilitates high-temperature cooling

- Increasing operation duration from 10 to 18 hours:
 - Increases required SWT by ~3°C (5°F)
 - Reduces cooling plant size by **43%**
- Still avoid unfavorable operation hours
 - High electricity prices
 - High greenhouse gas emission rates
 - Peak outdoor conditions
- Benefits include:
 - Lower cooling costs
 - Higher HVAC efficiency
 - Smaller mechanical footprint

Control of high thermal mass radiant systems

Field study building overview

Building 1 (B-1)

- Four story, 42K ft² (3.9K m²) LEED Platinum
- Moderate window-to-wall ratio (WWR) and well shaded
- Multi-tenant; 150 occupants
- Berkeley, CA

- Baseline: Jul Oct 2016
- Intervention: Jul Oct 2018
- Max: 94°F (34°C) | Min: 46°F (8°C)
- Daily averages
 - Mean: 62°F (17°C) | Range: 15°F (8°C)
 - Day-to-day variability: 1.6°F (0.9°C)

Field study building overview

Building 1 (B-1)

- Four story, 42K ft² (3.9K m²) LEED Platinum
- Moderate window-to-wall ratio (WWR) and well shaded
- Multi-tenant; 150 occupants
- Berkeley, CA

- Cooling tower only
 - Two position valves
- UFAD ventilation
- 2-pipe system for whole building
- Whole building tested

CBE control sequences for high thermal mass radiant system

Center for the Built Environment | November 2021

Baseline Mean air temperature profiles 78°F 70°F 8 16 Hour

Intervention

Baseline Intervention Daily air temperature profiles 26°C 78°F 21°C 70°F 16 16 8 8 Hour

Testing the TOS platform in a pilot study

Recruited 11 occupants and placed small sensor on their desk.

B-1 radiant system zone performance

Manifold valve operation

- Proxy for energy consumption
- Actuated significantly less time
- Daily average ON time
 - Baseline: ~4 hours
 - Intervention: <30 minutes
- Some days it did not turn on at all

B-1 radiant system plant performance

CBE Rad Tool

STEADY

(radiant.cbe.berkeley.edu)

Calculation type

- Steady-state
- ISO 11855 standard

STEADY STA	ATE	TRANSIENT	RESOURC	ES															
	This i	s an alpha vers	sion of the tool that is a	ctively unde	r develop	mnent. E	xpect bug	gs and p	lease let	us kno	w about	them b	y ema	ail if y	ou find	t one.			
		PERMALINK			T _{surface}			65.	7 °F			V _{tlt}				5	.86 gal	/ min	
				-	Δθ			17.4	4 °F			Ýlo	n			0	.586 ga	l / min	1
IMPERIAL	FLOOR	COOLING	ESS		K _H			0.52	27 Btu / (ł	hr ft² °F)		V	·P			8	.74 in /	s	
					Heat Ext	raction				,		dp	00			1	.05 psi		
		DIAGRAM			Q			146	600 Btu / ł	hr		lact				3	24 ft		
	CUS	TOM PLOT AXE	S		q _{sf}			9.1	5 Btu / (hi	r ft²)		lour				1	0		
Pine Nominal (Diameter											De				0	75 in		
Default AS	TM E876 5/	R										D				0	573 in		
Zone Width	11111070 5/	5		-8			_									0.	515 11		
80				ft	17			Supply V	Vater Belo	w Dew F	oint		al Surfa	ace H	at Flux	ζ			
Zone Length					16														
20 Pine Spacing				ft —															
6			9	n §	E 14														
Maximum Loop	b Length			-	12														
350				ft															
Maximum Pres	sure Drop Per	Loop			<u>10</u>														
10				ft t	8														
Pipe Depth				n 3	2														
4 Topping Therm	al Conductivity				6														
14.6			(Btu · in)/(h · ft² · °F	·) -	g 4											-			
Covering Therr	mal Resistance			÷ f	-														
0.25 Total Slab Thic	kness		(ft² · °F · h)/Bi	u	2														-
8			0	n	0	17.7 10	50.0.5		F 4 4 55		57.0.50	0.005							
Supply Water 1	Femperature				40.4	47.7 49	50.2 5	1.5 52.8	54.1 55.4 e	4 50.0	57.9 59	.2 00.5	01.8	03	04.3 0	00 0.00	0.9 08.4	2 09.4	1 /0./
57 Dolta Tompora	tura Datwaca D	aturn and Quantu	0	F X	Axis				0	appiy w	ator relli	oratule]						
E	lure Belween R	eturn and Supply	0	F S	upply W	ater Ten	nperatur	е											-
Design Indoor	Operative Temp	erature		Y	Axis														
77			٥	F To	otal Surf	ace Hea	t Flux												*
Design Dew Po	pint Temperatur	е																	
55			0	F															

STEADY STATE

TRANSIENT

(radiant.cbe.berkeley.edu)

Calculation type

- Steady-state
- ISO 11855 standard

Inputs

- Radiant system type
- **Design parameters**
- Metric/Imperial units

	This is	an alpha versi	on of the tool that is activel	Design Calculations	kpect bugs and please let us know abou	t them by email if yo Pipe Design	ou tina one.
	F	FRMALINK		Teurface	65.7 °F	Ý#	5.86 gal / min
				Δθ	17.4 °F		0.586 gal / min
MPERIAL	FLOOR	COOLING	ESS	Кн	0.527 Btu / (hr ft² °F)	v	8 74 in / s
				Heat Extraction		dploop	1.05 psi
DIAGRAM				Q	14600 Btu / hr	last	324 ft
	CUST	OM PLOT AXE	3	qsf	9.15 Btu / (hr ft²)	laure	10
Nominal D	iamatar	OM TEOTIVE.				num D	0.75 in
		1	*			D:	0.73 m
ne Width	IVI F070 3/0)					0.575 III
			ft	17	Supply Water Below Dew Point	Total Surface He	at Flux
e Length				16			
			ft				
e Spacing			- Con-	14			
			in	[(₂₄]			
ximum Loop	Length			ي 12 پي 12			
0			ft	Btm			
ximum Press	sure Drop Per L	oop		- 10 			
)			ft	8 eat			
e Depth				Ť			
ning Thorne	Oondustivity		In	e II			
pping menna	II Conductivity			al			
.0	al Resistance		(Dlu · III)/(II · II- · · · ·)	to 4			
	an resistance		(ft², °E, b)/Btu	2			
20 tal Slab Thick	ness		(it + i + ii)/Dtd	2			
			in	0			
pply Water Te	emperature			46.4 47.7 49	50.2 51.5 52.8 54.1 55.4 56.6 57.9 5	9.2 60.5 61.8 63 6	64.3 65.6 66.9 68.2 69.4 7
			°F		Supply Water Tem	perature [°F]	
Ita Temperati	ure Between Re	eturn and Supply		X Axis			
			°F	Supply Water Tem	iperature		
sign Indoor C	perative Temp	erature		Y Axis	P P 1 0		
,			°F	Total Surface Hea	t Flux		
sign Dew Po	int Temperature)					
			°F				

RESOURCES

TRANSIENT

STEADY STATE

55

RESOURCES

(radiant.cbe.berkeley.edu)

Calculation type

- Steady-state
- ISO 11855 standard

Inputs

- Radiant system type
- Design parameters
- Metric/Imperial units

Outputs

- Design values
 - Surface heat flux
 - Hydronic heat capacity
 - Waterflow rate
 - Pipe design
 - Surface temperature
- Visualization of the design space

Inis	is an aipna version of the tool that	s actively under	Design Calcul	ations	ys anu piease	iet us know abo	Pipe Design	you nhu ohe	
	PERMALINK		Tsurface		65.7 °F		V _{tit}		5.86 gal / min
			Δθ		17.4 °F				0.586 gal / min
IMPERIAL FLOOR	COOLING ESS		Ku		0.527 Btu	/ (br ft ² °E)	· loop		8.74 in / e
		_	Heat Extractio	n	0.527 Dia	/ (iii ii: 1)	dp.		1.05 pci
	DIAGRAM		0		14600 Bt	ı / br	uploop		1.05 psi
011			a		9 15 Btu	(br ft ²)	lact		324 II
CU	STOM PLOT AXES		YSI		J. 15 D(u /	(11 11)	Inum		10
pe Nominal Diameter		_					Do		0.75 in
efault ASTM F876 5	/8	•					Di		0.573 in
0 one Length 0 pe Spacing aximum Loop Length 50 aximum Pressure Drop Pe 0 pe Depth opping Thermal Conductivit 4.6	r Loop y (Btu · in)/(h · ft²	t in	17 16 14 12 10 8 6 4		Supply Water B	elow Dew Point	Total Surface H	leat Flux	
overing Thermal Resistanc .25 otal Slab Thickness	e (ft² · °F · h	/Btu	2						
unnly Water Temperature		in	46.4 47.7	49 50.2 5	1.5 52.8 54.1	55.4 56.6 57.9 5	59.2 60.5 61.8 63	64.3 65.6	66.9 68.2 69.4
ppry mater reinperature		°E				Supply Water Ter	mperature [°F]		
elta Temperature Between	Return and Supply	. X /	xis						
		°F Su	pply Water	Temperatu	re				
sign Indoor Operative Ten	nperature	Y #	XIS						
7		°F <u>To</u>	tal Surface	Heat Flux					
sign Dew Point Temperati	ıre								
		° 🗆							

Calculation type

- Steady-state
- ISO 11855 standard

Inputs

- Radiant system type
- Design parameters
- Metric/Imperial units

Outputs

- Design values
 - Surface heat flux
 - Hydronic heat capacity
 - Waterflow rate
 - Pipe design
 - Surface temperature
- Visualization of the design space

(radiant.cbe.berkeley.edu)

Layout of the webtool: Transient

STEAD

Calculation type

- Transient
- Over 2.5 million EnergyPlus simulations

1	his is an alpha version	of the tool that is activel	ly under develo	pment. Expect bugs a	nd please let us	s know about them by e	email if you find one.
	PERI	MALINK		Water Flow Rat	te	10.7	gal / m <mark>i</mark> n
_	IMP	ERIAL		25 25	Heat Flux	Hydronic Cooling Load	Heat Gains
_	CUSTOM	PLOT AXES		20 L			
Zone Ori	entation			Btu			
South	to Wall Patio		•	Rate			
0.2	to wall Ratio		-	Jage 10			
Radiant	Operation Start Time			Tra	V.		
0			-	1eat			
Radiant	Operation Duration						
8 hour			-	0 1 2 3 4	56789	10 11 12 13 14 15 16	17 18 19 20 21 22 23
Supply V	Vater Temperature						
55 °F			-			Hour	
Design V	Vater Temperature Differen	се				Operative Temperatures	
2.88 °F	=		*	80			
Tube Sp	acing			78			
5.98 in			*	u 0 76			
Inside Pi	pe Diameter			ature			
0.35 in	17		•	Tade 74			
Maximur	n Loop Length			E 72			
300 ft			•		\sim		
Space T	ype			erat			
office	ne Plug Load Baseload Fra	action	•	ටි 68			
0 1			-	66			
Heat Ga	in			1 2 3 4	56789	10 11 12 13 14 15 16	17 18 19 20 21 22 23
low			-			Hour	
A adding Ou	urface					Hour	

(radiant.cbe.berkeley.edu)

31

Layout of the webtool: Transient

(radiant.cbe.berkeley.edu)

Calculation type

- Transient
- Over 2.5 million EnergyPlus simulations

Inputs

- Design parameters
- Time

Layout of the webtool: Transient

STEADY STATE

TRANSIENT

(radiant.cbe.berkeley.edu)

Calculation type

- Transient
- Over 2.5 million EnergyPlus simulations

Inputs

- Design parameters
- Time

Outputs

- 24-hour cooling day design values
 - Surface heat flux
 - Hydronic heat capacity
 - Operative temperature

PERMALINK	
IMPERIAL	
CUSTOM PLOT AXES	
Zone Orientation	
South	-
Window to Wall Ratio	
0.2	-
Radiant Operation Start Time	
0	
Radiant Operation Duration	
8 hour	
Supply Water Temperature	
55 °F	
Design water remperature Difference	
2.88 °F	
	_
D.98 III Inside Pine Diameter	
0.25 in	
Maximum Loop Length	
300 ft	-
Space Type	
office	-
Night Time Plug Load Baseload Fraction	
0.1	-
Heat Gain	
Low	
Active Surface	
Floor	-

RESOURCES

24-hour transient profiles for different scenarios

Hour

Hour Center for the Built Environment | November 2021

Conclusions for high thermal mass radiant systems

High-temperature cooling feasible in all climates by:

- Managing average heat gains in the space
 - 24-hr average \leq 25 W/m² (8 Btu/hr-ft²)
- Increasing the cooling plant operation duration
 - Operate 18 h on design day

Field studies show that a relatively simple control strategy can be implemented natively in BMS.

Maintains predictable temperatures and low discomfort exceedance hours

Benefits:

- Sustainable energy sources such as evaporative or ground cooling
- Cooling plant size, footprint, and first cost reductions
- Higher HVAC system efficiency
- Operating time flexibility:
 - Daytime | Afternoon | Nighttime | Grid optimal
- Future-proofing for uncertain energy prices

Construction site on a high thermal mass radiant system.

Q&A

Carlos Duarte cduarte@berkeley.edu

