Integrated Design for Sustainable and Healthy Buildings

Won Hee Ko
Center for the Built Environment, UC Berkeley

We make our buildings and afterwards they make us. They regulate the course of our lives.

- Winston Churchill

English Architectural Association, 1924

Progression of architecture

PastShelter/protective structure

Present
Energy efficiency

Future
Occupant health & wellbeing

1973 Oil shock

2020 COVID-19

Sustainability in practice and research

Integrated design and application-driven research

My background

Architectural design

Building science and performance-based design

Professional experience

Academy of Motion Picture Arts and Sciences

Professional work: Burohappold Project location: Los Angeles, CA Key responsibility: Sustainable design

Worked mainly on SD / DD, 2013-2015

Rhino model: 3D geometry, glazing, frit pattern input

Grasshopper: Connecting Rhino and Excel

SD 100% pattern

Excel: Solar gain analysis tool, mapping IES-VE results

IES-VE: Solar gain analysis input

Publication:

Won Hee Ko. (2014) "Complex Geometry Facades in Building Energy Simulations and Standards." ASHRAE/IBPSA-USA Building Simulation Conference. Atlanta, GA, USA.

Presentations:

Won Hee Ko. (2014) "Future of Building Skins and Complex Geometry." In the 9th Energy Forum, 513–26. Bressanone, Italy. Won Hee Ko. (2014) "Complex Façade and Performance-Driven Design." Façade Tectonics #14 Conference. Los Angeles, CA, USA.

DD 50% pattern

DD 100% pattern

In practice, implementing high performance design is challenging

Research projects

1. Resiliency and integrated analysis of indoor environmental quality (IEQ)

2. Window view impact on occupants and multi-sensory effects

3. Assessing window view quality for building design and operation

1. Resiliency and integrated analysis of indoor environmental quality (IEQ)

Research Question:

How many hours can a building provide a comfortable environment without using energy?

Methods

Simplified model

Autonomy metrics - Color legend

Commercial Reference Building by the Department of Energy

Results

Results

Temporal analysis

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Thermal autonomy

Ventilation autonomy

Simultaneous analysis

Thermal and ventilation autonomy

2. Window view impact on occupants and multi-sensory effects

Source: Multisensory Cog Lab, Trinity College Dublin

Research Question:

How do people perceive the thermal environment differently when they have a window view?

Methods

Thermally identical spaces with and without windows (82.4° F, slightly warm condition)

View through the windows.

Floor plan of the CBE chamber.

Without windows.

With windows.

Experimental design

Study details

- 86 subjects (43 M & 43 F)
- Each subject participated in two experimental sessions (one with windows and one without)

Measurements

Subjective thermal perceptions, emotions, and cognitive performance of participants

Results

At slightly warm ambient condition,

- 1.33 °F lower thermal sensation
- 12 % more thermal comfort
- 8% in cooling energy and 6.5% of total HVAC energy reduction for a building in SF.
- Increase in positive emotions
- Decrease in negative emotions

- 6% better working memory
- 5% better concentration

3. Assessing window view quality for building design and operation

Research Question: What determines the quality of a window view?

Method

Building Standards

- CIBSE
- EN
- ASHRAE
- IES...

Green certification systems

- LEED
- WELL
- BREEAM
- Green Globes
- Green Star...

Scientific research papers

- Architecture
- Urban planning
- Landscape
- Environmental psychology
- Vision science

View Quality Framework

- Virtual symposium
- In-person workshop
- Collaboration: global dataset

Ko, W.H., Kent, M.G., Schiavon, S., Levitt, B., Betti, G., 2021. A window view quality assessment framework. LEUKOS - Journal of Illuminating Engineering Society of North America 40. https://doi.org/10.1080/15502724.2021.1965889

View Quality Index (VQI)

Variable Design considerations Criteria View content (Vcontent) · Position windows to face greenery and/or and natura Nature and urban water features when possible features · Ensure at least landscape and/or sky layer Horizontal stratification Avoid nearby content (< 6 m from window) in view. Content distance particularly in urban content Provide views showing dynamic features (≥ 6 m from Dynamic features window) (e.g., traffic flow and people) (movement) View access (Vaccess) Achieve the minimum view angle* View angle · Achieve View Factor of at least 3 Alternative access Design atrium and courtyard (at least 8m in width) with pleasant visual elements (e.g., nature) Spatial assessment . At least 75 % of the floor area has direct access to window view (≥ minimum view angle*) View clarity (Vclarity) Window design Avoid placing the horizontal/vertical mullions at the boundaries of the ground, landscape and sky layers Glazing and shading . Select shading material considering the VCI* when available materials Temporal attributes Control the glazing and shading systems to provide the desired clarity of window view(s) (≥ minimum number of occupied hours* that exceed minimum view clarity* for the space)

VQI = Vcontent · Vaccess · Vclarity

^{*} Design parameters that we could not find consensus in the reviewed standards, green certificate systems, and scientific literature. Section 7 discusses the future research.

Current work: Virtual reality in environmental research

Future research ideas

View clarity: dynamic facades to improve occupant well-being and building energy performance

- Advanced façade design, materials
- Understanding of human perception and behavior
- Optimized façade control

Healthier and more sustainable built environment using emerging technologies

Advanced sensing technology

In-depth understanding of human perception and behavior

Sustainable and healthy building design and operation

Thank you! Questions?

Won Hee Ko

wonheeko@berkeley.edu

