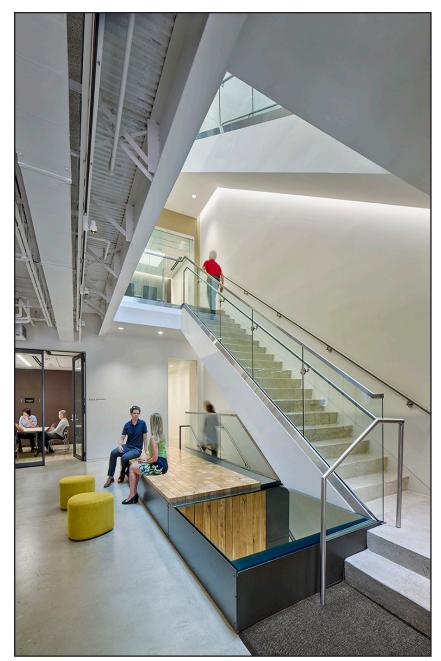

The Center for Landscape Architecture

THE AMERICAN SOCIETY OF LANDSCAPE ARCHITECTS
Owner
636 Eye Street, NW
Washington, DC 20001
202-898-2444

Gensler

Architect 2020 K Street, NW Washington, DC 20005


VIKA Capitol Civil Engineer 4910 Massachusetts Ave. NW, Suite 214 Washington, DC 20016

Oehme, van Sweden Landscape Architect 800 G Street, SE Washington, DC 20003

Robert Sillman Associates Stuctural Engineer 1053 31st Street, NW Washington, DC 20007

GHT MEP Engineers 1110 N. Glebe Road, Suite 300 Arlington, VA 22201

Integrated Communications Consulting, LLC Tel/Data Consultants 20868 Waterbeach Pl Sterling, VA 20165

PROJECT NARRATIVE

The ASLA Center for Landscape Architecture, the headquarters of the American Society of Landscape Architects, is a showcase for sustainable design excellence.

The 12,600-square-foot headquarters, located in the historic Chinatown district of Washington, DC, was built in 1995 and completely renovated in 2016 to achieve LEED Platinum, with a focus on maximizing energy efficiency, occupant comfort, and sustainable design. ASLA is also pursuing WELL Silver certification, with a focus on improving indoor air quality, lighting, nourishment, and promoting active lifestyles.

ASLA worked with architecture firm Gensler and landscape architecture firm Oehme van Sweden to build a new Center that embodies the mission, vision, and values of the Society. The project integrates new construction into the existing space and footprint; captures and reuses stormwater runoff; maximizes daylight within the space; increases occupant comfort and wellness; provides flexible, collaborative workspaces; incorporates biophilic elements; and models environmental values.

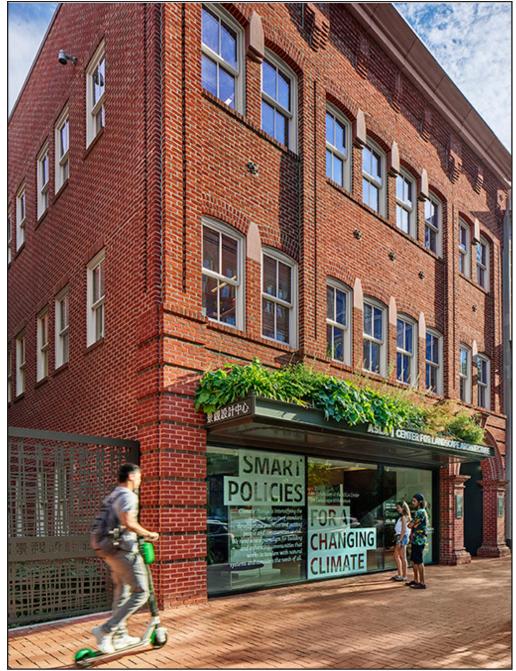
From the street to the roof, the new Center emphasizes connectivity -- to the Chinatown community, broader city, local ecosystem, and the world. The new Center dramatically enhances ASLA's ability to be a convener among allied professionals, public officials, its membership, and the general public. A state-of-the-art meeting, reception, and exhibition center on the street level provides an attractive and flexible venue for events, education programs, and exhibitions.

The transformative four-story atrium that was punched through the building provides greater cohesion among the floors, connecting the first floor welcome center to the award-winning green roof designed by Michael Van Valkenburgh Associates in 2005. Using nature to influence the design, the team utilized finishes that are honest and true. Concrete flooring and exposed ceilings combined with a nature-inspired color palette gives the space a natural feel.

The new space for ASLA results in a headquarters that better reflects their mission of advancing the profession, supporting more public outreach and connecting to the community.

HIGH PERFORMANCE: ENERGY, WATER EFFICIENCY, ENVIRONMENTAL QUALITY

- The project integrates and represents an investment in environmental stewardship throughout the building. The critical efficiency decisions listed below were outlined early in the project's development and clearly supported the pursuit of LEED Platinum.
- ENERGY: The HVAC System Upgrade presented a major decision for the project. The final choice for VRF was a choice for improved comfort, better efficiency, simpler maintenance.
- WATER EFFICIENCY: The project led with a conservation first mindset selecting efficient fixtures then layered in water reuse/recycling as much as possible for irrigation.
- ENVIRONMENTAL QUALITY: Augment the human experience in the space through integrating high levels of occupant controllability and access, healthy material selection and circadian lighting system.
- CHALLENGE: Balancing the qualitative pre-conditions of the WELL building standard (air quality, light quality, etc.) against the project's high performance goals of LEED Platinum.

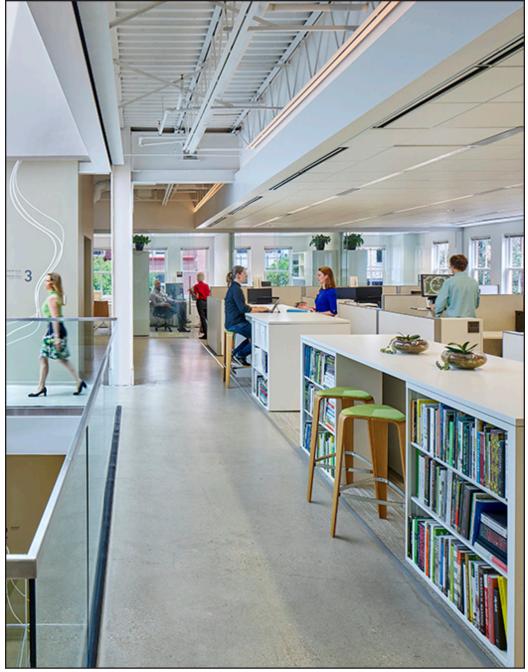

CONVENE + CONNECT: COMMUNITY

- Creating a well-designed space that showcases ASLA's organizational values internal and external community engagement, environmental stewardship, and human health and wellbeing.
- A new open connecting staircase brings in all of the communities together creating a social axis for employees and visitors. It also encourages active vertical circulation promoting occupant health and energy conservation by not taking the elevator.
- The Center for Landscape Architecture has become a stronger educational center in it's community and reinforces ASLA as a learning institution. A key visual component of this is the decision to bring a portion of the green roof to their Eye Street storefront.

ILLUMINATE DESIGN: BEYOND BIOPHILIA

- The green roof had always been a major part of ASLA's identity, and the redesign sought to pull this element throughout the interior space and down to the storefront.
- During a 10–month monitoring period, ASLA's green roof prevented 27,500 gallons of stormwater nearly 78 percent of all precipitation hitting the roof from flowing into D.C.'s overburdened sewer and stormwater system.
- Water quality testing shows that the water runoff contains fewer pollutants than typical water runoff. Most significantly, the roof is reducing the amount of nitrogen entering the watershed.
- By opening the internal fire stair there was a life safety need to include a fire code compliant stair which resulted in the design of the external fire stair located to the rear of the project. The design team took this challenge as an opportunity to integrate more biophilic elements designing a fire stair that is a trellis for vining plants.
- The temperature on the green roof on the hottest summer days can be as much as 59 degrees cooler than conventional roofs on neighboring buildings in the DC area.
- The Side Yard redesign connected the space to the public sidewalk along Eye St and enhanced the stormwater retention infrastructure.

The Center for Landscape Architecture


BEFORE

STOREFRONT

With a new headquarters, the American Society of Landscape Architecture, now known as the ASLA Center for Landscape Architecture, took advantage of a rebrand.

AFTER

The Center for Landscape Architecture

BEFORE

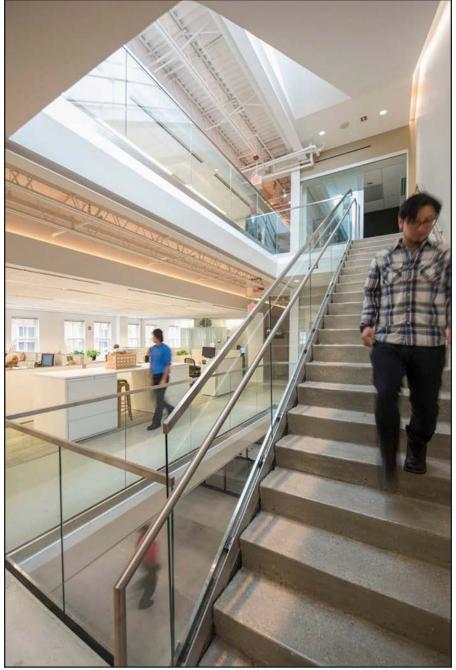
WORKSTATIONS

Lowering the partition heights and providing ample access to natural daylight for all employees.

AFTER

The Center for Landscape Architecture

BEFORE

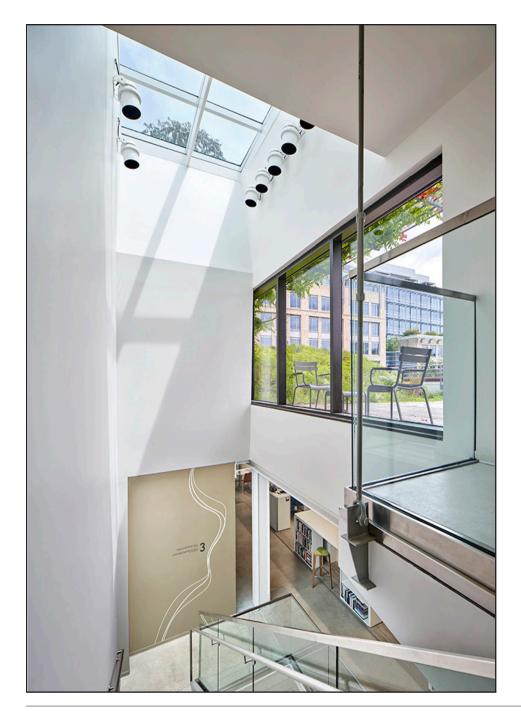

COURTYARD

The redesign connects the courtyard to the public streetscape and augments employee connectivity.

AFTER

The Center for Landscape Architecture

AFTER


The Center for Landscape Architecture

BEFORE

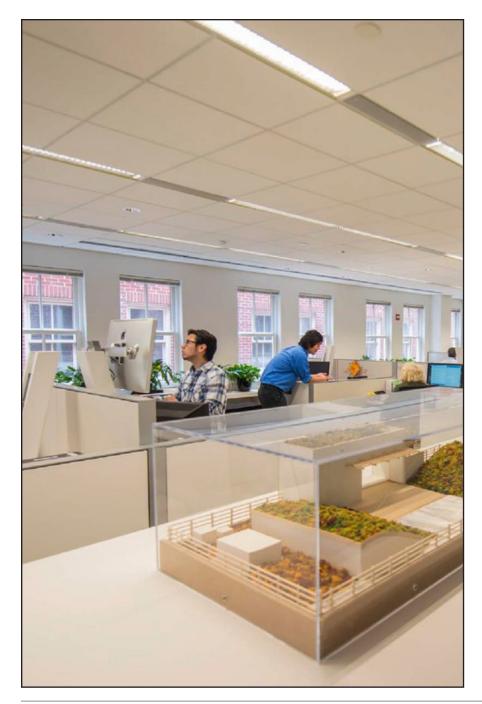
CONNECTION

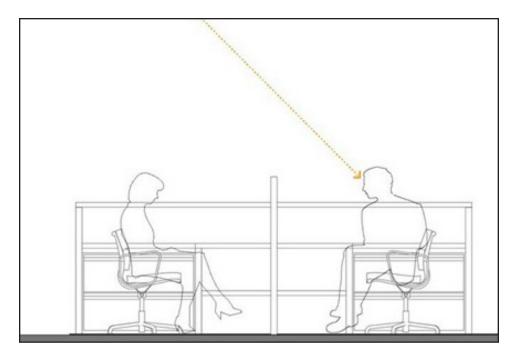
A large part of the renovation included the opening up of the stairwell to the green roof and workspaces to provide a flow of connectivity throughout the four floors.

OPEN AND BRIGHT

A skylight was placed at the top to allow light to shine all the way down the stairs creating a connection from the street level to the roof.

The Center for Landscape Architecture

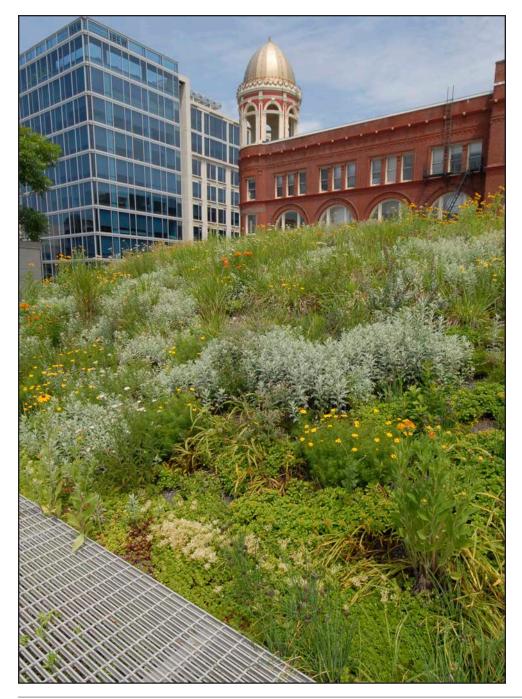

BEFORE


FIRE STAIR CASE

The new exterior fire stair is surrounded by mesh to allow plants and greenery to grow throughout while also serving as an alternative exit point.

AFTER

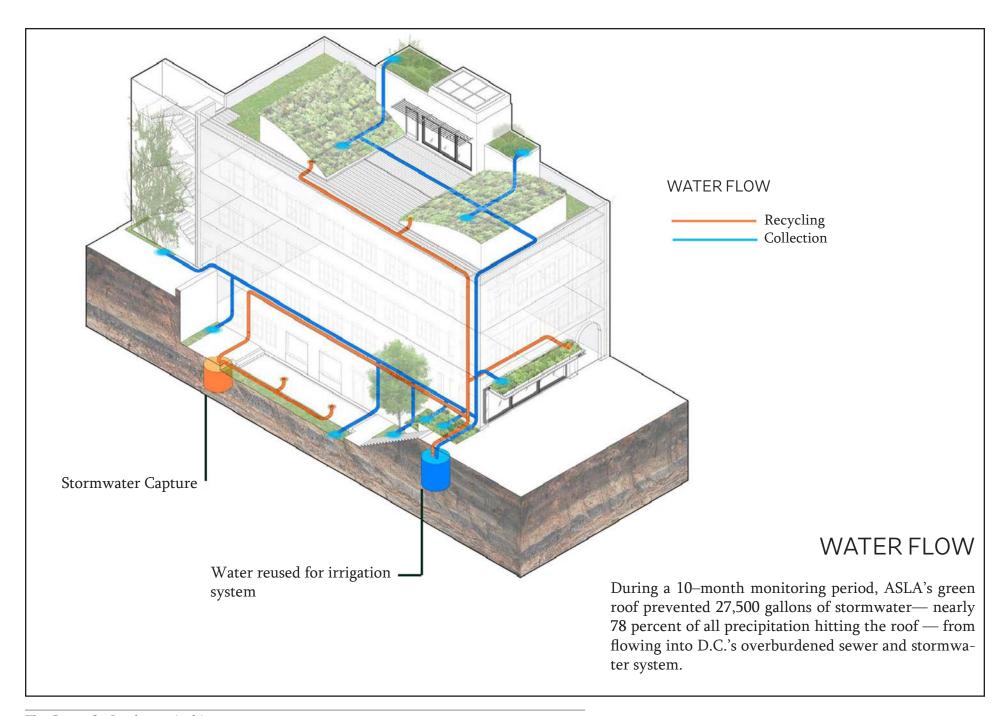
The Center for Landscape Architecture



MELANOPIC LIGHT

Adjustable fixture delivering light to eye at 45° angle stimulates the view of the occupant and reinforces the natural patterns of the human circadian cycle. Each workstation has individualized controls.

The Center for Landscape Architecture



GREEN ROOF

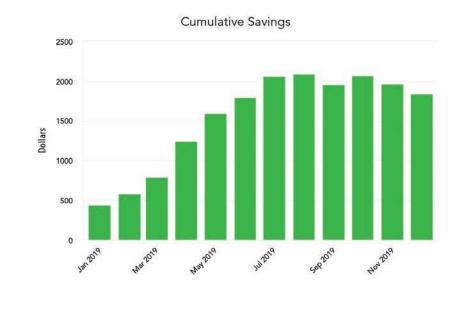
An urban oasis offering respite on top of the Center, the ASLA green roof was one of the first in the city. Temperature reductions are up to 59 degrees cooler during hot summer months compared to neighboring buildings.

The Center for Landscape Architecture

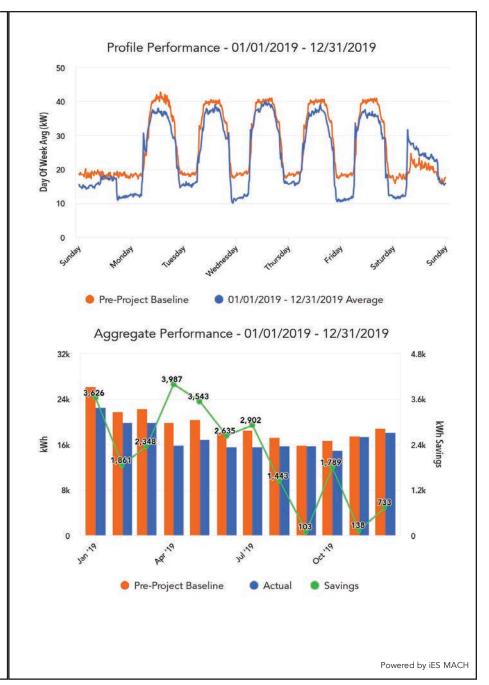
COMMUNITY LEARNING

The Center for Landscape Architecture has become a stronger educational center in it's community.

636 | Street NW - Total


CBE's Annual Livable Building - 2019 Energy Data

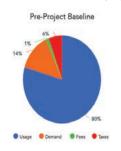
01/01/2019 - 12/31/2019

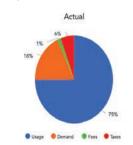

Total Project Savings (through 12/31/2019)

\$1,840 25,108

PERFORMANCE

Powered by iES MACH




ASSUMPTIONS

Project Length (Years)

TARIFF DETAILS

01/01/2019 - 12/31/2019

Savings By Cost Type

	Savings
Usage	\$3,030
Demand	\$(1,295)
Taxes	\$104

Savings By Time of Use

	Savings
All Year All Day	\$2,085
Summer All Day	\$(266)
Winter All Day	\$22.32

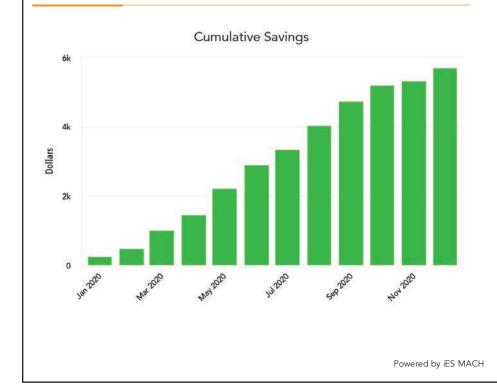
SAVINGS HISTORY

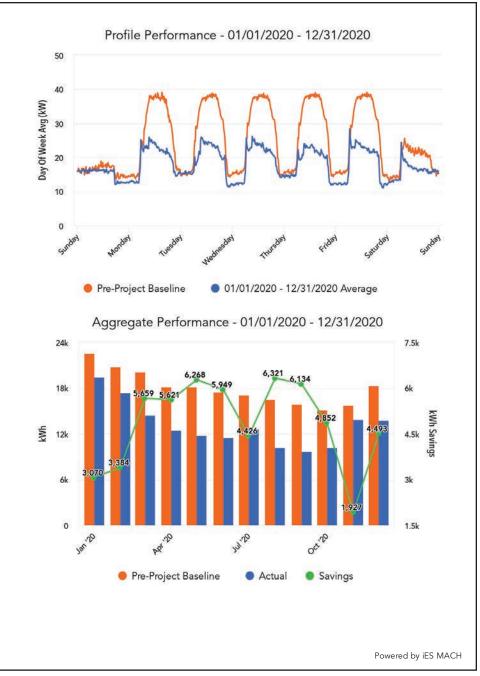
			Usage (kWh)			Cost (\$)
	Pre-Project					
	Baseline	Actual	Savings	Cumulative	Savings	Cumulative
Dec 2019	18,844	18,111	733	25,108	\$(118)	\$1,840
Nov 2019	17,520	17,383	137.7	24,375	\$(107)	\$1,959
Oct 2019	16,779	14,990	1,789	24,237	\$108	\$2,066
Sep 2019	15,897	15,795	102.6	22,448	\$(131)	\$1,958
Aug 2019	17,244	15,800	1,443	22,346	\$25.53	\$2,089
Jul 2019	18,534	15,632	2,902	20,902	\$266	\$2,063
Jun 2019	18,288	15,653	2,635	18,000	\$202	\$1,797
May 2019	20,441	16,897	3,543	15,366	\$351	\$1,595
Apr 2019	19,856	15,869	3,987	11,822	\$448	\$1,244
Mar 2019	22,283	19,935	2,348	7,835	\$214	\$796
Feb 2019	21,750	19,888	1,861	5,487	\$144	\$582
Jan 2019	26,164	22,538	3,626	3,626	\$438	\$438

Powered by iES MACH

Powered by iES MACH

636 | Street NW - Total

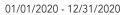

CBE's Annual Livable Building - 2020 Energy Data

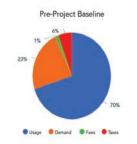

01/01/2020 - 12/31/2020

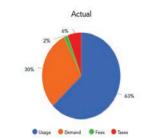
Total Project Savings (through 12/31/2020)

\$5,713 58,105 kWh

PERFORMANCE






ASSUMPTIONS

Project Length (Years)

TARIFF DETAILS

Savings By Cost Type

	Savings
Usage	\$5,745
Demand	\$(355)
Taxes	\$323

Savings By Time of Use

	Savings
All Year All Day	\$3,342
Summer All Day	\$1,361
Winter All Day	\$1,012

SAVINGS HISTORY

	Usage (kWh)		Usage (kWh)			Cost (\$)
	Pre-Project Baseline	Actual	Savings	Cumulative	Contrara	Cumulative
Dec 2020	18,329	13,836	4.493	58,105	Savings \$381	\$5,713
Nov 2020	15,794	13,867	1.927	53,612	\$132	\$5,332
Oct 2020	15,086	10,234	4,852	51,684	\$473	\$5,200
Sep 2020	15,836	9,701	6,134	46,832	\$682	\$4,727
Aug 2020	16,563	10,242	6,321	40,697	\$714	\$4,045
Jul 2020	17,079	12,653	4,426	34,376	\$443	\$3,331
Jun 2020	17,445	11,496	5,949	29,950	\$667	\$2,888
May 2020	18,104	11,837	6,268	24,002	\$753	\$2,221
Apr 2020	18,127	12,507	5,621	17,734	\$460	\$1,467
Mar 2020	20,112	14,454	5,659	12,114	\$516	\$1,008
Feb 2020	20,805	17,421	3,384	6,455	\$249	\$492
Jan 2020	22,552	19,481	3,070	3,070	\$243	\$243

Powered by iES MACH

Powered by iES MACH

LEED Summary - ASLA Center for Landscape Architecture

12/18/2017 636 Eye Street, NW 20001 LEED Goal: Platinum 09.7848.900

Gensler

	Identifier	Credit Name	Documentation	Y	MY	MN	N
	SSc1o1	Select a LEED Certified Building	N/A				5
	SSc1o2p1	Brownfield Redevelopment	N/A				1
	SSc1o2p2	Storm water Design - Quantity Control	N/A				1
	SSc1o2p3	Storm water Design - Quality Control	N/A				1
s	SSc1o2p4	Heat Island Effect - Non-roof	N/A				1
ē	SSc1o2p5 SSc1o2p6	Heat Island Effect - Roof	Gensler	1			
ŝ	SSc1o2p6	Light Pollution Reduction	N/A				1
e	SSc1o2p7	Water Efficient Landscaping - 50% Reduction	OvS	2			
ap	SSc1o2p8	Water Efficient Landscaping - No Potable Water Use or Irrigation	OvS	2			
.≘	SSc1o2p9	Innovative Wastewater Technologies	N/A				2
4	SSc1o2p10	Water Use Reduction 30% (Base Building)	N/A				1
S	SSc1o2p11	On-site Renewable Energy	N/A				2
Ś	SSc1o2p12	Other Quantifiable Environmental Performance	N/A				1
	SSc2	Development Density and Community Connectivity	Gensler	6			
	SSc3.1	Alternative Transportation - Public Transportation Access	Gensler	6			
	SSc3.2	Alternative Transportation - Bicycle Storage and Changing Rooms	Gensler	2			
	SSc3.3	Alternative Transportation - Parking Availability	Gensler	2			

	WEp1	Water Use Reduction 20%	GHT	R		
a	WEc1a	Water Use Reduction 30%	GHT	6		
ş	WEc1b	Water Use Reduction 35%	GHT	2		
>	WEc1c	Water Use Reduction 40%	N/A			3

	EAp1	Fundamental Commissioning of Building Energy Systems	A2	R		
	EAp2a	Minimum Energy Performance - Lighting 10% Reduction	GHT & Stroik	R		
	EAp2b	Minimum Energy Performance - 50% ENERGY STAR	Gensler & ASLA	R		
	EAp2c	Minimum Energy Performance - ASHRAE Req.	GHT	R		
	EAp3	Fundamental Refrigerant Management	GHT	R		
	EAc1.1a	Lighting 15% Reduction	GHT & Stroik	1		
	EAc1.1b	Lighting 20% Reduction	N/A			1
	EAc1.1c	Lighting 25% Reduction	N/A			1
ė	EAc1.1d	Lighting 30% Reduction	N/A			1
pher	EAc1.1e	Lighting 35% Reduction	N/A			1
둅	EAc1.2a	Daylight Controls for Day lit Areas	GHT	1		
S	EAc1.2b	Daylight Controls for 50% of the Lighting Load	GHT			1
	EAc1.2c	Occupancy Sensors for 75% of the Connected Lighting Load	GHT	1		
Ŧ	EAc1.3o1a	Equipment Efficiency	N/A			5
οĀ	EAc1.3o1b	Zoning Controls	N/A			5
>	EAc1.3o2a	Reduce Design Energy Cost - 15% Improvement	GHT	5		
죵	EAc1.3o2b	Reduce Design Energy Cost - 30% Improvement	GHT	5		
	EAc1.4a	70% ENERGY STAR	Gensler & ASLA	1		
ѿ	EAc1.4b	77% ENERGY STAR	Gensler & ASLA	1		
	EAc1.4c	84% ENERGY STAR	Gensler & ASLA	1		
	EAc1.4d	90% ENERGY STAR	Gensler & ASLA	1		
	EAc2	Enhanced Commissioning	A2	5		
	EAc3o1a	Install sub metering equipment within a tenant space.	N/A			2
	EAc3o1b		N/A			3
	EAc3o2	CASE 2. Projects 75% or More - Install sub metering equipment to measure and record energy	N/A			5
	EAc4o1	Green Power - 2yr contract for 50% of project's electricity	ASLA	5		
	EAc4o2	Green Power - 2yr contract for 8kwhrs/sqft	ASLA			5
				27		

	MRp1	Storage and Collection of Recyclables	Gensler	R		
	MRc1.1	Tenant Space - Long-Term Commitment (10yr)	ASLA	1		
es	MRc1.2a	Maintain Interior Nonstructural Components 40% Reuse	N/A			1
5	MRc1.2b	Maintain Interior Nonstructural Components 60% Reuse	N/A			1
2	MRc2a	Construction Waste Management Divert 50% from Disposal	Coakley	1		
Š	MRc2b	Construction Waste Management Divert 75% from Disposal	Coakley	1		
æ	MRc3.1a	Materials Reuse - 5% Reuse	N/A			1
ø	MRc3.1b	Materials Reuse - 10% Reuse	N/A			1
	MRc3.2	Materials Reuse - 30% Furniture and Furnishings	N/A			1
<u>.</u>	MRc4a	Recycled Content - 10% of Content	Coakley	1		
亞	MRc4b	Recycled Content - 20% of Content	Coakley	1		
<u>a</u> t	MRc5a	Regional Materials - 20% Manufactured	Coakley			1
	MRc5b	Regional Materials - 10% Manufactured, Extracted, and Fabricated	Coakley	1		
	MRc6	Rapidly Renewable Materials - 5%	N/A			1
	MRc7	Certified Wood -50% FSC	Coakley	1		

The Center for Landscape Architecture

LEED SCORECARD

			/	
IEQp1	Minimum Indoor Air Quality Performance	GHT	R	$\overline{}$
IEQp2	Environmental Tobacco Smoke (ETS) Control	ASLA	R	-
IEQc1	Outdoor Air Delivery Monitoring	GHT	1	-
IEQc2	Increased Ventilation	GHT	1	
IEQc3.1	Indoor Air Quality Management Plan - During Construction	Coakley	1	
IEQc3.2	Indoor Air Quality Management Plan - Before Occupancy	Coakley		T
IEQc4.1	Low-Emitting Materials - Adhesives and Sealants	Coakley	1	
IEQc4.2	Low-Emitting Materials - Paints and Coatings	Coakley	1	
IEQc4.3o1	Low-Emitting Materials - Flooring Systems (GreenLabel Plus, FloorScore, etc.)	Coakley	1	
IEQc4.3o2	Low-Emitting Materials - Flooring Systems (California Regulations)	Coakley		
IEQc4.4	Low-Emitting Materials - Composite Wood and Agrifiber Products	Coakley	1	T
IEQc4.5o1	LEM - Systems Furniture and Seating (Greenguard)	Gensler	1	
IEQc4.5o2	LEM - Systems Furniture and Seating (EPA testing)	N/A		
IEQc4.5o3	LEM - Systems Furniture and Seating (ANSI/BIFMA testing)	N/A		
IEQc5	Indoor Chemical and Pollutant Source Control	Gensler & GHT	1	
IEQc6.1	Controllability of Systems - Lighting	GHT	1	
IEQc6.2	Controllability of Systems - Thermal Comfort	GHT		
IEQc7.1	Thermal Comfort - Design	GHT	1	
IEQc7.2	Thermal Comfort - Verification	ASLA	1	
IEQc8.1a	Daylight and Views - Daylight75% of Spaces	Gensler		
IEQc8.1b	Daylight and Views - Daylight 90% of Spaces	N/A		
IEQc8.2	Daylight and Views - Views for Seated Spaces	Gensler	1	
			13	
IDc1.1	Exemplary Performance for Development Density	Gensler	1	
IDc1.2	Exemplary Performance for Public Transportation Access	Gensler	1	. Т
IDc1 2	WELL Mind Footures (Popular and Design Biophilia)	Conclor	- 1	

IDc1.4	WELL Nourishment Features	ASLA	1	T
IDc1.5	Environmental Pest Control	Gensler	1	
IDc2	LEED® Accredited Professional	Gensler	1	

RPc1	SSc1o2p1	N/A			1
ro RPc2	SSc1o2p2	N/A			1
O RPc3	WEc1c	N/A			1
BD RPc4	MRc3.1b	N/A			1
RPc5	IEQc6.1	GHT	1		
RPc6	IEQc7.1	GHT	1		
Note: Fort and other control of American Indiana and Indiana an			1		

Project Totals 84 0 0

A ROLE MODEL TO ITS COMMUNITY

The new space for ASLA results in a headquarters that better reflects their mission of advancing the profession, supporting more public outreach and connecting to the community.