Assessing the Effect of Shade Materials on View Clarity

Isabel Burgess, Stefano Schiavon, Chai Um CBE

Won Hee Ko New Jersey Institute of Technology

Piers MacNaughton View

Michael Kent Berkeley Education Alliance for Research in Singapore (BEARS), Singapore

Why view?

Impact of a window view in a workplace setting: Our significant findings

86 participants at the climatic chamber, UC Berkeley

In slightly warm conditions, with windows, test subjects:

Felt cooler

- 1.33 °F lower thermal sensation
- 8% in cooling energy reduction for a building in SF

Felt happier

- Increase in positive emotions
- Decrease in negative emotions

More focused

- 6% better working memory
- 5% better concentration

Window view quality assessment: Primary variables

Ko, WH, et al. (2021) LEUKOS - Journal of Illuminating Engineering Society of North America

How can we evaluate the **view clarity** of different window and shading systems?

Key variables

Visual Light Transmittance

 Percentage of visible light striking the glazing or shading system that will pass through to the inside

Openness Factor

 "Open" or "see-through" percentage of the fabric shade

Color

Images from Texstyle Visualizer Tool

Overview

Objective

 Develop an assessment workflow of the effect of different type of shade materials on view clarity

Approach

- Human-factors experiment using a physical lab space with an internal window and a screen
 - Changing:
 - Shade materials
 - View images
 - Measuring:
 - Human visual performance
 - Subjective perception on view

Funding

View

Experimental design

- 50 participants
- 3-hour controlled lab experimental session
- Vision tests prior to the main session
- 12 window materials in random order

Testing materials

Measures: Visual acuity, contrast sensitivity and color sensitivity tests

Survey Questions

- Participants rated their degree of satisfaction with different aspects of view:
 - Clarity of view, connection to the outside, visual privacy, color vividness, color naturalness, feeling of relaxation, reflections/mirror effect

Measures: Subjective perception

Center for the Built Environment | October 2022

Next steps

Analyze data and write journal article

Present full results at the April 2023 CBE meeting

Test more materials to improve the prediction model

- Diverse window materials
 - Non-repeated, irregular patterns

Develop a computer vision model based on HDR images

Edge detection and other computer vision algorithms

OZC NTPOZLECF EDLNFTCOZP TNCFELOPZD DEFPOTZCLN LZENFODPCT FOPLTCEONZ

Next steps: View clarity study in daylit space with exterior view

Rotatable test room in Singapore

15 fabric roller blind

- 5 openness factors
- 3 fabric colours

Two electrochromic glazing panes

Impact

Q&A

Isabel Burgess isabel.burgess@berkeley.edu

Won Hee Ko wonhee.ko@njit.edu

Stefano Schiavon schiavon@berkeley.edu

Please take a moment to complete the feedback form.

Clarity of View Pond Scene

Satisfied