# CLIMATE TRACE

**Data Science and Decarbonization** 

**Gabriela Volpato Product Manager** 

November 16th, 2022

# The Climate TRACE coalition

Climate TRACE is a joint initiative founded by collaborating universities, environmental nonprofits, tech startups, and environmental leaders; plus dozens of other institutions that have contributed additional data and analysis.

The purpose of the coalition is to pool the collective technical resources and domain knowledge of all of these organizations to bring transparency, recency, and actionability to global greenhouse gas (GHG) emissions inventories.



## **Emissions Data for Decision-Making**

Independent

 Direct measurements of emissions-causing activities from remote sensing data and multiple other datasets



 Annual data for every country 2015-2020 and more than 70k assets

# Comprehensive

All major emissions sectors

- All countries
- Coming soon: Facility-level emissions estimates for the largest plants across all sectors

### **Emissions sectors covered**



## Built Environment generated around 37% of annual global CO2 emissions in 2021

**Building operations** are responsible for 25% emissions globally annually

**Building materials** and construction are responsible for an additional 12% annually;



## The construction ecosystem & carbon emissions



## The construction ecosystem & carbon emissions



# Global Manufacturing emissions of Materials Commonly used in construction

**Global CO2e Emissions** 



# USA Manufacturing emission of Materials Commonly used in construction



# **Reducing emissions impacts of new builds**

# Material decarbonization

- <u>Choosing materials from</u> <u>manufacturers that have</u> <u>lower carbon emissions</u> <u>during its production process</u> <u>by:</u>
  - Increasing production efficiency
  - Electrification of process equipment
  - Technology advancements

### Demand reduction and circularity

- Lowering demand for primary resource (e.g aluminum, steel through design);
- Using generative design to create outcome-based designs that help frame and clarify how different materials choices can lower GHG emissions

### Optimizing construction and material

- Shift materials and equipment to alternatives that are more energy efficient;
- Include substitution by low-carbon materials, higher performing materials;



# How Climate Trace data can help with:

# Material decarbonization

- <u>Choosing materials from</u> <u>manufacturers that have</u> <u>lower carbon emissions</u> <u>during its production process</u> <u>by:</u>
  - Increasing production efficiency
  - Electrification of process equipment
  - Technology advancements

### Demand reduction and circularity

- Lowering demand for primary resource (e.g aluminum, steel through design);
- Using generative design to create outcome-based designs that help frame and clarify how different materials choices can lower GHG emissions

### Optimizing construction and material

- Shift materials and equipment to alternatives that are more energy efficient;
- Include substitution by low-carbon materials, higher performing materials;

## **Climate TRACE Asset level emissions inventory**





# **CLIMATE TRACE**

INDEPENDENT GREENHOUSE GAS EMISSIONS TRACKING

EXPLORE THE MAP ≫

DOWINLOAD THE DATA ≫



6 凸 ☆

🔄 🖗

\* 🗆



# Selecting Steel Manufacturers by using Climate TRACE data

Global Steel Plants, Ordered by Emissions Factors



### Selecting Steel Vendors by using Climate TRACE data



**Emissions per Tonne of Steel Produced** 

# Selecting Cement Manufacturers by using Climate TRACE data

Global Cement Plants, Ordered by Emissions Factors



### **Selecting Cement Vendors by using Climate TRACE data**



**Emissions per Tonne of Cement Produced** 

# How Climate TRACE monitors emissions:

**OBSERVE ACTIVITY:** satellite imagery identifies emissions-causing activities







**ESTIMATE ACTIVITY:** AI, ML, and statistical models estimate activity data

**TRAIN THE MODELS:** training data (e.g., CEMS, sensors, reported emissions) complements activity observations

**COMPLEMENT ACTIVITY DATA:** Other datasets to estimate facility size, technology, and emissions factors

### EMISSIONS ESTIMATES

# Monitoring Steel plants data:

Modified Sentinel-2 imagery of Eisenhuettenstadt mill



#### Slag pit

Hot process impurities are dumped into a slag pot then transported back to large pits dug into the ground to be allowed to cool.

**Sinter Plant** 

The temperature maintained between 1150 - 1250°C.

#### Source: Google data, Copernicus data, TransitionZero analysis

#### **Basic Oxygen Furnace**

Off-gas emerges from the reaction at about 1650°C.

#### **Blast Furnaces Row**

A mixture of sinter and coke is heated to create pig iron at up to 1300°C.

# Future work: Pilot on Buildings Energy Consumption

Working towards generating higher resolution estimates (spatially and temporally) of **building energy consumption for residential and commercial buildings**, with a focus on non-electricity energy consumption globally.



# Future work: Pilot on Buildings Energy Consumption

### Inputs for the AI model:

- Temperature Data
- Population Data
- Building Size Distribution
- Economic Data
  - GDP
  - Human Development Index
- CO<sub>2</sub> regional estimates
- Satellite derived features



N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon, "Combining satellite imagery and machine learning to predict poverty," Science, vol. 353, no. 6301, pp. 790–794, Aug. 2016, doi: 10.1126/science.aaf7894.



# <u>Climate TRACE</u> data can help Building Industries experts choose the less carbon intensive manufacturer for commonly used materials in this industry.

## Climatetrace.org

