Grid Decarbonization and Resilience at Roosevelt Village 995 East Santa Clara

September 28, 2023 Greenbuild

We design thoughtful places that allow communities to thrive and serve as a 'multiplier of good'

40 years 53 people in 3 offices: SF, OAK, BHM 450+ awards 13,000+ homes built 7,000+ affordable homes

Context | Housing & Decarbonization

"Better Buildings"

"Secure & Resilient Communities"

Context | IRA Funding for Resilience in Low-Income Communities

Case Study

The Villages at Roosevelt

San Jose, California

Grid-Interactive Building Concept

What is the optimum way to combine Efficiency, DERs (PV + battery) and load management strategies?

Daily demand

Load reduction

- Efficiency
- Energy recovery

Renewables

Rooftop PV

Load shift

- Load management
- Thermal Storage
- Battery Storage

Xendee | Cost & Carbon Optimization

74 Apartments serving formerly homeless and very low income seniors

Includes 2 manager's units

6 Stories Type III / Type I Construction 76,000 SF

LEED Platinum (goal)

Energy Reduction Measures | Cost effectiveness, peak savings

Energy Reduction Measures | Simple Cost Payback

Simple cost payback (years)

Energy Reduction Measures | Carbon "Payback"

Carbon "payback" (years)

Innovations in exterior insulation

Energy Use Reduction

Domestic Hot Water | Thermal Storage

Load Shift at Roosevelt Village

Strategy	Portion of Annual 4-9pm Load Served	Approximate Incremental cost	
Energy Efficiency	10%	+ \$250,000	
Thermal Storage (hot water)	32%	+ \$50,000	
 Peak Load Management Dynamic ventilation control Light dimming Ohm Connect Laundry incentives 	14%	+ ~ \$0	
171 kW Solar PV array + 268 kWh Battery Storage	38%	+ \$2,000,000	

\$50,000,000 Approx. Construction Budget

Proposed Design | Net Load with Solar PV & Battery Storage 4.9 pm 100-75-100-75-2ero Utility Purchase 4-9 pm 4-9 pm

15

20

10

ndon

Summer post-peak day

Solar PV Output Battery Discharge Exports

Net Load

Exports to grid (\$\$)

Financial Return | VNEM allocation of credits and bill savings

Res Export Allocation	Res Annual Bills	House Annual Bills	Avg Per Apt Annual Bills	
0%	\$61,505	\$-55,310	\$831	
50%	\$20,411	-\$11,483	\$275	
63.1%	\$9,644	\$0	\$130	<mark>} → \$11/m</mark>
74.835%	0	\$10,286	0	

Cost Effectiveness | 30-year Net Present Value

Whole Building Life Cycle Cost (30-year Net Present Value)

Life Cycle Cost including Social Cost of Carbon & Value of Resilience (@\$190/ton)

Total Carbon Comparison | 30-year embodied and operational emissions

Resident feedback | Resilience and outage concerns

66

Resident feedback | Resilience and Outage Concerns

"Visibility in the apartment and the hallways is a top priority for me"

"I was homeless for 10 years, I'll be fine"

Date of interviews: January 2023

Total people interviewed: 27

Grid Resilience | Most likely power failures

	Duration	Likelihood
Average outage (DOE data)	8 hrs	
Heat wave-related black-out (May include smoke)	1-3 hrs	1-5 a year
Winter storm	1-2 days	Once every 1-3 years
Major Earthquake	3-7 days	Once in next 30 years
Public Safety Power Shutoff	1-7 days	Not likely

Number of Extreme Heat Days

2019 PG&E Public Safety Power Shut-off

Apartment Design Features

(services supported)

Indoor Temperatures | Baseline condition

Indoor Temperatures | Proposed efficiency measures & Tier 1 back-up

Indoor Temperatures | Proposed EEM & Tier 1 back-up & Operable windows

Key Takeaways

- 1. Radically equitable grid responsive and resilient affordable housing:
 - a. Appears to maybe possibly make sense from a societal perspective
 - b. Adds something but not a lot to construction cost

2. The recipe is pretty simple:

(1) good passive design, (2) hot water load shift

- (3) "efficiency first" and (4) virtual net metering
- 3. We need to look closely at the operational burden to housing providers and the **needs of each community**.
- 4. Federal funding is helpful, but several **policy barriers remain in the way**

