Keeping California Housing Safe in a Warming World

Charlie Huizenga, Ed Arens, Gail Brager, Carlos Duarte, Katherine Exss, Harry Jiang, Layla Kwong, David Lehrer, Alessandra Luna Navarro, Akihisa Nomoto, Claudiane Ouellet-Plamondon, Paul Raftery, Stefano Schiavon, Ruiji Sun, Rachel Thero, Yan Wang, Hui Zhang Ben Seeley, Rupam Singla, Grant Marr, Marian Goebes TRC Companies

Keeping California Housing Safe in a Warming World

Objective

 Develop policy to define maximum safe thermal conditions for California residential buildings and ensure that housing can maintain those conditions

Methods

- Critical literature review
- Stakeholder workshops
- Model energy impacts of policy options
- Policy development

Funding

 California Dept. of Housing and Community Development

Photo by Breno Assis on Unsplash

U.S. Heat Alerts in 2023

https://www.citizen.org/article/mapping-heat-alerts-summer-2023

Indoor Temperatures

What is a safe indoor upper temperature limit?

77 °F? 82 °F? 90 °F? 80 °F? 85 °F?

Literature Search Summary

- We reviewed over 300 references across many disciplines
 - Large metadata studies hospitalizations, morbidity, mortality
 - Chamber experiments physiological response to heat
- There is a large body of work linking high outdoor temperatures to health outcomes
- Thermal comfort in hot conditions is very well understood
- Acute heat illness (heat exhaustion, heat stroke) is reasonably well understood for military personnel, athletes, certain workforces
- No definitive work on safe upper temperature limits for health

"...no firm answer can be given to the question of whether people living in housing with a temperature above 24 °C [75.2 °F] have worse health outcomes than those living in housing with an indoor temperature below that threshold."

Existing U.S. Residential Upper Temperature Limits

State	City/County	Limit
ТХ	El Paso	90°F (32°C)
ТХ	Dallas	85°F (29°C)
NV	Clark County (Las Vegas)	85°F (29°C)
CA	Los Angeles (draft)	82°F (28°C)
AZ	Tempe	82°F (28°C)
AZ	Phoenix	82°F (28°C)
AZ	Tucson	82°F (28°C)
ТХ	Houston	80°F (27°C)
CA	Palm Springs	80°F (27°C)
LA	New Orleans	80°F (27°C)
MD	Montgomery	80°F (27°C)
OR	Portland	78°F (26°C)

Temperature Ranges Evaluated in the Literature

Vulnerable Populations

Age

- Elderly
- Children under 5
- Infants

Social Context

- Low-income
- Living alone

Physical Health

- Blood pressure
- Heart disease
- Diabetes
- Respiratory
- **.**

...

• • •

Mental Health

- Dementia
- Schizophrenia

•

In warm conditions, temperature is not the only factor impacting thermal comfort and health

Major variables influencing thermal comfort

- Air temperature
- Mean radiant temperature
- Air speed
- Humidity
- Metabolic activity
- Clothing

Air motion can provide a significant cooling effect

The temperature of an environment at 50% relative humidity and still air in which a subject would have the same heat loss as in the actual environment

Temperature Ranges Evaluated in the Literature

Impact of an indoor upper temperature limit

- Unlikely to impact occupant behavior (e.g., thermostat settings)
- Unlikely to impact most home owners
- Biggest impact on low-income rental housing
 - Could provide a basis for requiring landlords to provide a means to keep housing cool

Next steps

- Public draft due May 31 for 2 week comment period
- Finalize policies and report over the summer

Charlie Huizenga

- huizenga@berkeley.edu
- Please join the breakout session on Policy Brainstorming for Heat Resilient Housing

