F

Affordable Mixed-Use Development in a Carbon-Constrained Future

Carlos Duarte, Paul Raftery CBE

Xinxin Hu, Brett Webster *RMI*

Andy Brooke, GG Merkel, Nick Young, Ari Usher *Association for Energy Affordability* Katie Ackerly, Tom Bliska *David Baker Architects*

Jesse Loper, Mike Schaefer First Community Housing David Heinzerling Taylor Engineers

David Johnson, Corey Starbird, James Smith The Engineering Enterprise

Woody Delp *LBNL*

Scott Smith, Tyler Bole James E Roberts Obayashi

Molly Seto *KPFF*

CEC EPIC Design Challenge for affordable mixed-use development

Ē

Energy and emissions evaluation overview

Objective

 Identify and evaluate design strategies and building systems that meet CEC's goals

Approach

- EnergyPlus simulations
 - Calculate hourly end-use electricity and thermal loads
- Xendee optimizations
 - Shifts building loads to optimize for PV and energy storage cost and carbon impacts

Funding

CEC EPIC program

Roosevelt Village: 995 East Santa Clara Street in San Jose, CA

Mixed-use, 6-story

- 74 apartments serving previously unhoused and very low-income seniors
- Supportive services, community rooms, food pantry, property management
- Courtyard with resident gardens

Rendering of the new construction proposal

Roosevelt Village: 995 East Santa Clara Street in San Jose, CA

LEED Platinum baseline model

- All-electric building
- Central heat pump water heater
- Conventional packaged AC with heat pump
 - 'PTAC'
- Central air supply, side-wall exhaust
- R-21 wall cavity insulation
- R-30 roof with tapered rigid insulation
- Double-pane vinyl windows
 - U 0.30 | SHGC 0.23
- LED lighting and EnergyStar appliances

Energy efficiency measures

Baseline

LEED Platinum project

R-21 Wall cavity insulation Air leakage: 2 ACH @ 50 Pa ENERGY STAR Appliances Low flow fixtures Double-pane vinyl windows (0.28 U, 0.23 SHGC)

Cost-effective

350 kWh max fridge & induction (5% overall equipment reduction)

Lower flow toilet and shower head (15% DHW reduction)

Exterior shading (18" protrusion)

Ceiling fans (relaxed cooling setpoint from 75 °F to 78 °F)

Dynamic ventilation (vary ventilation rate to shift load)

All Measures

2" Continuous insulation

Air leakage 1 ACH @ 50 Pa

Reduced window to wall ratio (height from 8 ft to 6 ft)

Thin triple vinyl windows (0.16 U, 0.17 SHGC)

Energy efficiency measures' impact on the baseline model

Ę

HVAC alternatives with and without energy recovery ventilator (ERV)

Baseline

Conventional HVAC unit (Amana)

- Central ventilation with rooftop heat pump DOAS
- Central DHW via dedicated heat pump with no peak shifting control

Advanced HVAC unit (Ephoca)

- In unit ventilation or central ventilation
- Ducted or unducted wallmounted
- Central DHW via dedicated heat pump with storage for peak shifting

Four-pipe hydronic system

- Central ventilation with 4-pipe DOAS air handlers
- 4-pipe fan coils
- Heat recovery and thermal storage
- In unit DHW via hot water heat exchanger

Ę

Annual HVAC energy consumption

Ē

Proposed energy efficiency package lowers 4-9pm load by 10%

Xendee: Cost & carbon optimization

Cost comparison of meeting all daily 4-9pm residential loads

Rooftop PV 130 kW

Elevated PV 171 kW

Annualized costs: DERs capital costs and utility purchase (net of exports) NOT include EEMs or HVAC systems costs

Indefinite coverage for Tier 1 loads

Balancing CEC design requirements

	Battery Size Design Req	Daily 4-9pm Res Loads	Indefinite Tier 1 Loads (10% of peak)	24 hr Outage Tier 1&2 Loads	72 hr Outage Tier 1&2 Loads
	Small: ~200 kWh	100%	99%	90%	73%
	Medium: ~400 kWh	100%	99.7%	98%	80%
Required space 100 ft ²	Big: ~ 600 kWh	100%	99.9%	100%	90%
	Huge: ~1.300 kWh	100%	100%	100%	100%

Elevated PV Canopy, proposed energy efficiency package

Battery Size Drivers

- 1) T1&T2 72-hr outage
- 2) Indefinite Tier 1 coverage
- 3) T1&T2 24-hr outage
- 4) Daily 4-9pm residential loads

Max out PV and minimize central battery

Ē

Max out PV and minimize central battery

Optimized Technology Package

	Strategy	Portion of Annual 4- Approximate 9pm Load Served Incremental cost			
	Thermal Storage (domestic hot water)	32%	+	\$50,000	
	Peak Load Management	14%	+	~ \$0	
	Energy Efficiency	10%	+	\$250,000	
X	Solar PV array, Battery storage & Microgrid Infrastructure	44%	+	\$2,000,000	

\$2,300,000 \$50,000,000 Approx. Construction Budget

Center for the Built Environment | October 2024

Ę

Takeaways and next steps

Takeaways

- Efficiency measures are key to meet goals
- HVAC loads present the greatest potential but are a small portion of the overall energy use
- Grid charging significantly reduces required DERs investment
- Meeting the critical and important load indefinitely are more challenging than meeting the entire load during grid peak hours every day

Q&A

Carlos Duarte cduarte@berkeley.edu

